摘要:
The present invention is directed to a novel cement powder comprising an organic component consisting of one or more biocompatible and bioresorbable polymers and an inorganic component consisting of one or more calcium phosphate compounds. The invention also relates to the apatitic CPC resulting from the mixing of said cement powder with a liquid phase and setting.
摘要:
The invention relates to the use of a silanised hydroxypropylmethylcellulose (HPMC) or silanised hydroxyethylcellulose (HEC) hydrogel, self-crosslinking as a function of pH, for the three-dimensional ex vivo culture of chondrocytes.
摘要:
The present invention relates to the use of an hydrogel comprising silylated biomolecule for the three-dimensional culture of cardiomyocytes or stem cells which are able to differentiate into cardiomyocytes, and to an aqueous composition comprising i) cardiomyocytes or stem cells which are able to differentiate into cardiomyocytes, and ii) a hydrogel comprising silylated biomolecule, for use for treating heart failure, in particular heart failure following myocardial infarction.
摘要:
The invention concerns: - a silylated biomolecule having the following formula (I): - the process for the preparation of a silylated biomolecule of formula (I), - the use of a silylated biomolecule of formula (I) to functionalize the surface of a support, - a process for the preparation of a hydrogel by use of a silylated biomolecule of formula (I), - the hydrogel obtainable by said process, - said hydrogel as a biological tissue substitute, - a composition comprising said hydrogel in a pharmaceutically acceptable vehicle, - said composition for the release of active principle.
摘要:
The invention relates to the use of a silanised hydroxypropylmethylcellulose (HPMC) or silanised hydroxyethylcellulose (HEC) hydrogel, self-crosslinking as a function of pH, for the three-dimensional ex vivo culture of chondrocytes.
摘要:
The invention relates to the use of a silanised hydroxypropylmethylcellulose (HPMC) or silanised hydroxyethylcellulose (HEC) hydrogel, self-crosslinking as a function of pH, for the three-dimensional ex vivo culture of chondrocytes.