摘要:
An example embodiment includes a method for initializing a navigation system. The method includes receiving inertial measurement data from an inertial measurement unit over time and storing the inertial measurement data in a buffer with an indication of a time of validity for the inertial measurement data. The method also includes receiving navigation data from an aiding source, the navigation data having a time of validity, and initializing a navigation solution with the navigation data. The method also includes summing inertial measurement data from the buffer to produce an inertial motion estimate for a time increment after the time of validity of the navigation data, applying at least one of coning or sculling compensation to the inertial motion estimate to produce a compensated inertial motion estimate, and propagating the navigation solution forward based on the compensated inertial motion estimate.
摘要:
Systems and method for reducing the size of inertial measurement units are disclosed. In one embodiment, an inertial measurement unit assembly comprises: at least one inertial sensor configured to output uncompensated sensor data; an inertial isolator configured to isolate the at least one inertial sensor; an interface adapter, wherein the interface adapter includes at least one calibration alignment pin that is used as a reference point between the at least one inertial sensor, the inertial interface adapter and a vehicle to which the inertial interface adapter is attached. Furthermore, the inertial measurement unit is configured to output the uncompensated sensor data to a processing device located external to the inertial measurement unit.
摘要:
An example embodiment includes a method for initializing a navigation system. The method includes receiving inertial measurement data from an inertial measurement unit over time and storing the inertial measurement data in a buffer with an indication of a time of validity for the inertial measurement data. The method also includes receiving navigation data from an aiding source, the navigation data having a time of validity, and initializing a navigation solution with the navigation data. The method also includes summing inertial measurement data from the buffer to produce an inertial motion estimate for a time increment after the time of validity of the navigation data, applying at least one of coning or sculling compensation to the inertial motion estimate to produce a compensated inertial motion estimate, and propagating the navigation solution forward based on the compensated inertial motion estimate.
摘要:
Systems and methods to incorporate master navigation system resets during transfer alignment are provided. In one embodiment, a system comprises: a set of local inertial sensors; a local navigation processor coupled to local inertial sensors, the local navigation processor receiving inertial navigation data from local inertial sensors and converting the data into a navigation solution; a local Kalman filter (LKF) coupled to the local navigation processor and a master Kalman filter (MKF), the LKF receiving the navigation solution. The LKF receives from the MKF a Precision Transfer Alignment Message (PTAM) that includes at least one navigation aid measurement. The LKF inputs the navigation aid measurement into a measurement formation algorithm and calculates a measurement residual. The LKF receives from the MKF a Reset Transfer Alignment Message (RTAM) that includes a bias correction. The LKF inputs the bias correction into a state propagation algorithm to add to a navigation state.
摘要:
An example embodiment includes a method for initializing a navigation system. The method includes receiving inertial measurement data from an inertial measurement unit over time and storing the inertial measurement data in a buffer with an indication of a time of validity for the inertial measurement data. The method also includes receiving navigation data from an aiding source, the navigation data having a time of validity, and initializing a navigation solution with the navigation data. The method also includes summing inertial measurement data from the buffer to produce an inertial motion estimate for a time increment after the time of validity of the navigation data, applying at least one of coning or sculling compensation to the inertial motion estimate to produce a compensated inertial motion estimate, and propagating the navigation solution forward based on the compensated inertial motion estimate.
摘要:
Systems and method for reducing the size of inertial measurement units are disclosed. In one embodiment, an inertial measurement unit assembly comprises: at least one inertial sensor configured to output uncompensated sensor data; an inertial isolator configured to isolate the at least one inertial sensor; an interface adapter, wherein the interface adapter includes at least one calibration alignment pin that is used as a reference point between the at least one inertial sensor, the inertial interface adapter and a vehicle to which the inertial interface adapter is attached. Furthermore, the inertial measurement unit is configured to output the uncompensated sensor data to a processing device located external to the inertial measurement unit.
摘要:
Systems and methods to incorporate master navigation system resets during transfer alignment are provided. In one embodiment, a system comprises: a set of local inertial sensors; a local navigation processor coupled to local inertial sensors, the local navigation processor receiving inertial navigation data from local inertial sensors and converting the data into a navigation solution; a local Kalman filter (LKF) coupled to the local navigation processor and a master Kalman filter (MKF), the LKF receiving the navigation solution. The LKF receives from the MKF a Precision Transfer Alignment Message (PTAM) that includes at least one navigation aid measurement. The LKF inputs the navigation aid measurement into a measurement formation algorithm and calculates a measurement residual. The LKF receives from the MKF a Reset Transfer Alignment Message (RTAM) that includes a bias correction. The LKF inputs the bias correction into a state propagation algorithm to add to a navigation state.