摘要:
A method for removing, separating and concentrating certain selected ions from a source solution that may contain larger concentrations of other ions comprises bringing the source solution in contact with a composition comprising an ion-binding ligand covalently bonded to a membrane having hydrophilic surface properties. The ligand portion of the composition has affinity for and forms a complex with the selected ions, thereby removing them from the source solution. The selected ions are then removed from the composition through contact with a much smaller volume of a receiving solution in which the selected ions are either soluble or which has greater affinity for the selected ions than does the ligand portion of the composition, thereby quantitatively stripping the complexed ions from the ligand and recovering them in concentrated form in the receiving solution. The concentrated ions thus removed may be further separated and recovered by known methods. The process is useful in the removal of selected ions, including noble metals and other transition metals from a variety of source solutions such as are encountered in semicondutor, nuclear waste cleanup, metals refining, environmental cleanup, providing ultra high purity fluids, electric power, and other industrial enterprises. The invention is also drawn to the ligand-membrane compositions.
摘要:
A method for the removal, separation, and concentration of cesium cations from a source solution which may contain larger concentrations of other alkali metal ions comprises bringing the source solution into contact with a polymeric resin containing poly(hydroxyarylene) ligands. The process is useful in the removal of cesium cations from a variety of source solutions such as from semiconductor, nuclear waste cleanup, metals refining, electric power, and other industrial enterprises. The invention is also drawn to the poly(hydroxyarylene)-ligand-containing polymeric resins.
摘要:
A method for the removal, separation, and concentration of alkali metal, alkaline earth metal, Pb and/or Tl cations from a source solution which may contain larger concentrations of other ions which comprises bringing the source solution into contact with a compound comprising an oxygen donor macrocycle-containing ligand covalently bonded through an organic spacer silicon grouping to a solid inorganic support.