摘要:
A "porous barrier" is formed without formation of a discrete barrier layer by enriching grain boundaries of a body of polysilicon with nitrogen to inhibit thermal mobility of silicon species therealong. In a polycide gate/interconnect structure, the reduced mobility of silicon suppresses agglomeration of silicon in a metal silicide layer formed thereon. Since silicon agglomeration is a precursor of a polycide inversion phenomenon, polycide inversion which can pierce an underlying oxide and cause device failure is effectively avoided. The increased thermal stability of polycide structures and other structures including a body of polysilicon thus increases the heat budget that can be withstood by the structure and increases the manufacturing process window imposed by the presence of polysilicon which can be exploited in other processes such as annealing to develop a low resistance phase of refractory metal silicide included in the polycide structure, drive-in annealing for formation of source/drain regions of field effect transistors and the like.
摘要:
A process is provided for the low temperature deposition of a thin film of borophosphosilicate glass (BPSG) for use in semiconductor devices, such as DRAMs. The process includes utilizing R-OH groups as reagents to provide additional -OH groups so that an intermediate {Si(OH) 4 } n is formed having superior reflow properties, allowing the annealing and reflow steps to occur at temperatures less than 750°C, which is the current processing temperature.
摘要:
A "porous barrier" is formed without formation of a discrete barrier layer by enriching grain boundaries of a body of polysilicon with nitrogen to inhibit thermal mobility of silicon species therealong. In a polycide gate/interconnect structure, the reduced mobility of silicon suppresses agglomeration of silicon in a metal silicide layer formed thereon. Since silicon agglomeration is a precursor of a polycide inversion phenomenon, polycide inversion which can pierce an underlying oxide and cause device failure is effectively avoided. The increased thermal stability of polycide structures and other structures including a body of polysilicon thus increases the heat budget that can be withstood by the structure and increases the manufacturing process window imposed by the presence of polysilicon which can be exploited in other processes such as annealing to develop a low resistance phase of refractory metal silicide included in the polycide structure, drive-in annealing for formation of source/drain regions of field effect transistors and the like.