摘要:
The present application is directed to access isolation for multi-operating system devices. In general, a device may be configured using firmware to accommodate more than one operating system (OS) operating concurrently on the device or to transition from one OS to another. An access isolation module (AIM) in the firmware may determine a device equipment configuration and may partition the equipment for use by multiple operating systems. The AIM may disable OS-based equipment sensing and may allocate at least a portion of the equipment to each OS using customized tables. When transitioning between operating systems, the AIM may help to ensure that information from one OS is not accessible to others. For example, the AIM may detect when a foreground OS is to be replaced by a background OS, and may protect (e.g., lockout or encrypt) the files of the foreground OS prior to the background OS becoming active.
摘要:
Multiple operational contexts are called up from a Standby power state of a computing device. The operational contexts run on one or more operating systems of the computing device. When a desired operational context is chosen, such as by activation through a user initiated act or hot key, the operating system supporting the desired operational context is booted up from the Standby power state.
摘要:
When transitioning from sleep mode to active mode, a processing system loads first stage resume content and second stage resume content into a volatile memory of the processing system. The first stage resume content may contain contextual data for a first program that was in use before the processing system transitioned to sleep mode. The second stage resume content may contain contextual data for another program that was in use before the processing system transitioned to sleep mode. The processing system may provide a user interface for the first program before all of the second stage resume content has been loaded into the volatile memory. Other embodiments are described and claimed.
摘要:
Firmware-based conversion methods for storing converted firmware variables in a firmware storage device, such as flash memory. Under one method, “eager” compression of firmware is performed. In response to a storage request, a determination is made to whether a compressor is available. If it is, the firmware variable is stored in a compressed form in the storage device; if not, the firmware variable is stored in an uncompressed form. In response to a read request for a stored firmware variable, a determination is made to whether the variable is stored in a compressed or uncompressed form. If it is compressed, a decompressor is employed to return the variable to its uncompressed form prior to providing it to the requestor; already uncompressed variables are provided directly to the requestor. An application program interface is provided to enable operating system runtime access to the firmware variables. Similar conversions may be employed separately or in parallel, including encryption.
摘要:
In one embodiment, a method is provided that may include one or more operations. One of these operations may include, in response, at least in part, to a request to store input data in storage, encrypting, based least in part upon one or more keys, the input data to generate output data to store in the storage. The one or more keys may be authorized by a remote authority. Alternatively or additionally, another of these operations may include, in response, at least in part, to a request to retrieve the input data from the storage, decrypting, based at least in part upon the at least one key, the output data. Many modifications, variations, and alternatives are possible without departing from this embodiment.
摘要:
Deterring output of data from a computing platform may be accomplished by launching a driver to filter write requests to selected output ports of the computing platform, receiving a write request, and denying the write request when the write request is for a selected output port identified as being in a read-only mode.
摘要:
A temporary memory of a computer system is configured during a boot mode. Page tables are generated for the temporary memory. System memory of the computer system is initialized. Contents of the temporary memory are migrated to the system memory.
摘要:
Methods and apparatus to provide secure firmware storage and service access are disclosed. One example method may include receiving a request to execute an instruction in a pre-boot environment, determining an identity of the instruction, determining if an access control list includes an entry corresponding to the instruction, and selectively allowing the execution of the instruction if the access control list includes an entry corresponding to the instruction.
摘要:
A temporary memory of a computer system is configured during a boot mode. Page tables are generated for the temporary memory. System memory of the computer system is initialized. Contents of the temporary memory are migrated to the system memory.