摘要:
Method and apparatus for implementing a raster graphic display video data path that provides arbitrary mixing of a plurality of images. The video data path is highly parallelized, and employs parallel devices operating under the control of a set of look-up tables (15). The look-up tables are loadable from a controller, such as a host workstation (14). The raster graphic display video data path functions with unlimited screen resolutions, and also enables a variety of different pixel data formats (15) from a potentially large number of different sources. Outputs from several image sources are mixed under the control of the host workstation, with a resultant pixel value being based on (a) a combined translucency coefficient (alpha) of the images, for each image source, and (b) a window identification number assigned by the host workstation. Pixel value conversion to a common predetermined format provides coherency between pixel values generated by a number of different image sources, such as HDTV and graphics servers. A separate frame buffer (FB-1 to FB-N) is allocated for each of the sources.
摘要:
5 n7 An image display system includes an input to a source (10, 12, 14) of image pixel data wherein each pixel is expressed as an M-bit value within a non-linear range of values. A first LUT (16) is coupled to an output of the source for converting each M-bit pixel value to an N-bit value within a linear range of values. An image memory, or frame buffer (18), has an input coupled to an output of the first LUT for storing the N-bit pixel values. The system further includes a second LUT (20) coupled to an output of the frame buffer for converting N-bit pixel values output by the frame buffer to P-bit pixel values within a non-linear range of values. The converted values are subsequently applied to a display (24). In an exemplary embodiment, the first LUT stores gamma corrected pixel values and the second LUT stores inverse gamma corrected pixel values. Preferably the second LUT stores a plurality of sets of inverse gamma corrected pixel values. Also, the frame buffer stores, for each of the N-bit pixel values, a value that specifies a particular one of the plurality of sets of inverse gamma corrected pixel values for use in converting an associated one of the N-bit pixel values.
摘要:
A locking mechanism is incorporated in a high-resolution video display system including a high-resolution monitor, a computer for providing controls signals to said display system and two high-resolution frame buffers, one for storing computer generated graphics images and one for storing video data both of said buffers being operable under control of said computer for reading out data to the monitor. The locking mechanism includes an output lock functionally located between the output of both of the frame buffers and the high-resolution monitor for preventing video data from overwriting graphics data on said monitor screen. An input lock is also provided for preventing static video data stored in predetermined regions of the video frame buffer from being continually overwritten by motion video data being continually supplied to the video frame buffer. The output lock utilizes an extra bit-plane in the video buffer which stores a predetermined lock pattern and utilizes the normal monitor output port of the buffer operating under control of standard frame buffer addressing circuitry in combination with straight-forward combinational logic to achieve the locking function. The input lock utilizes a small DRAM which stores the input lock pattern data and utilizes this data in conjunction with normal write operations in the video buffer to control circuitry to disable the write function in predetermined regions of the video buffer.
摘要:
An image buffer semiconductor chip is described that includes circuitry for decompressing, compressed pixel image data such data comprising at least a pair of color codes and a bit mask including bit positions with values that define which pixels in a pixel subset of the pixel image receive the encoded color code data. The chip comprises a matrix of memory modules with the pixels in a pixel subset stored in an interleaved fashion, one pixel per module. A data bus communicates with all of the memory modules and broadcasts the color codes. A mask register stores the bit mask when it appears on the data bus. Circuitry selectively writes a first color code in the modules in accordance with bit values of a first kind in the MASK and writes the second color code into the modules in accordance with bit values of a second kind in the MASK.
摘要:
An image display system (10) includes an image buffer (20,22) having a plurality of addressable locations for storing image pixel data. The system further includes circuitry (24,34,36) coupled to an output of the image buffer for converting image pixel data read therefrom to electrical signals for driving an image display (18). The circuitry is responsive to signals generated by an image display controller (16) for generating one of a plurality of different timing formats for the electrical signals for driving an image display having a specified display resolution. The apparatus further includes circuitry (40,42) for configuring the image buffer in accordance with the specified display resolution. The image buffer is configurable, by example, as two, 2048 location by 1024 location by 24-bit buffers and one 2048 location by 1024 location by 16-bit buffer; or as two, 2048 location by 2048 location by 24-bit buffers and one 2048 location by 2048 location by 16-bit buffer. Each of the 24-bit buffers store R,G,B pixel data and the 16-bit buffers each store a color index (CI) value and an associated window identifier (WID) value. Circuitry at the output of the image buffer decodes CI and WID values into R,G,B pixel data and a Key value specifying pixel mixing.
摘要:
A locking mechanism is incorporated in a high-resolution video display system including a high-resolution monitor, a computer for providing controls signals to said display system and two high-resolution frame buffers, one for storing computer generated graphics images and one for storing video data both of said buffers being operable under control of said computer for reading out data to the monitor. The locking mechanism includes an output lock functionally located between the output of both of the frame buffers and the high-resolution monitor for preventing video data from overwriting graphics data on said monitor screen. An input lock is also provided for preventing static video data stored in predetermined regions of the video frame buffer from being continually overwritten by motion video data being continually supplied to the video frame buffer. The output lock utilizes an extra bit-plane in the video buffer which stores a predetermined lock pattern and utilizes the normal monitor output port of the buffer operating under control of standard frame buffer addressing circuitry in combination with straight-forward combinational logic to achieve the locking function. The input lock utilizes a small DRAM which stores the input lock pattern data and utilizes this data in conjunction with normal write operations in the video buffer to control circuitry to disable the write function in predetermined regions of the video buffer.
摘要:
5 n7 An image display system includes an input to a source (10, 12, 14) of image pixel data wherein each pixel is expressed as an M-bit value within a non-linear range of values. A first LUT (16) is coupled to an output of the source for converting each M-bit pixel value to an N-bit value within a linear range of values. An image memory, or frame buffer (18), has an input coupled to an output of the first LUT for storing the N-bit pixel values. The system further includes a second LUT (20) coupled to an output of the frame buffer for converting N-bit pixel values output by the frame buffer to P-bit pixel values within a non-linear range of values. The converted values are subsequently applied to a display (24). In an exemplary embodiment, the first LUT stores gamma corrected pixel values and the second LUT stores inverse gamma corrected pixel values. Preferably the second LUT stores a plurality of sets of inverse gamma corrected pixel values. Also, the frame buffer stores, for each of the N-bit pixel values, a value that specifies a particular one of the plurality of sets of inverse gamma corrected pixel values for use in converting an associated one of the N-bit pixel values.