Electron beam lithography system
    2.
    发明公开
    Electron beam lithography system 失效
    Elektronenstrahl-LITHOGRAPHIE的系统。

    公开(公告)号:EP0660370A2

    公开(公告)日:1995-06-28

    申请号:EP94480149.7

    申请日:1994-11-24

    IPC分类号: H01J37/317

    摘要: An electron beam system for direct writing applications combining the parallel throughput of a projection system and the stitching capability of a probe-forming system employs an electron gun to illuminate an initial aperture uniformly, a first set of controllable deflectors to scan the beam over the reticle parallel to the system axis, impressing the pattern of a subfield of the reticle in each exposure, in which a first variable axis lens focuses an image of the initial aperture on the reticle, a second variable axis lens collimates the patterned beam, a second set of controllable deflectors to bring the beam back to an appropriate position above the wafer, and a third variable axis lens to focus an image of the reticle subfield on the wafer, together with correction elements to apply aberration corrections that may vary with each subfield, thereby providing high throughput from the use of parallel processing of the order of 10 7 pixels per subfield with the low aberration feature of the variable axis lens and the ability to tailor location-dependent corrections that are associated with gaussian systems that stitch the image pixel by pixel.

    摘要翻译: 用于直接写入应用的电子束系统将投影系统的平行吞吐量与探针形成系统的缝合能力结合起来使用电子枪来均匀地照射初始孔径,第一组可控制的偏转器将光束扫过光罩 平行于系统轴线,在每个曝光中印制掩模版的子场的图案,其中第一可变轴透镜将初始孔径的图像聚焦在光罩上,第二可变轴透镜准直图案化的光束,第二组 的可控制偏转器将光束返回到晶片上方的合适位置,以及第三可变轴透镜,用于将光罩子场的图像与校正元件一起聚焦在晶片上,以应用可随每个子场变化的像差校正,从而 从使用具有低像差特征的每个子场的10 <7>像素级的并行处理提供高吞吐量o f可变轴透镜,以及定制与高斯系统相关联的位置相关校正的能力,该像素系统逐像素地对图像进行编码。

    Process and device to correct the alignment of an electron beam
    3.
    发明公开
    Process and device to correct the alignment of an electron beam 失效
    纠正电子束对准的方法和装置

    公开(公告)号:EP0071243A3

    公开(公告)日:1983-06-15

    申请号:EP82106778

    申请日:1982-07-27

    IPC分类号: H01J37/304

    CPC分类号: H01J37/304

    摘要: Zum Korrigieren der Ausrichtung eines Elektronenstrah les, mit dem eine Auftreffplatte (12) beaufschlagt wird, wird die Strahlquelle (10) elektronenoptisch auf eine zentrale, kreisförmige Öffnung (27; Fig. 4) einer Ausblendplatte (28) abgebildet. Zu ausgewählten Zeiten wird das Bild der Strahlquelle auf eine zweite kreisförmige Öffnung (35) in der Ausblendplatte abgelenkt. Mittels eines Ablenk-Joches (30) erfolgt ein genaues Ausrichten des Bildes der Strahlquelle auf diese zweite Öffnung. Deren Durchmesser entspricht etwa der Halbwertsbreite W der Stromdichteverteilung des Bildes der Strahlquelle in dieser Öffnung. Das genaue Ausrichten des Bildes der Strahlquelle auf die zweite Öff nung erfolgt durch kleine Verschiebungen des Bildes. Diese werden beendet, wenn der die zweite Öffnung durchfließen de Elektronenstrom einen Maximalwert annimmt. Dann wird der Elektronenstrahl wieder zu der zentralen kreisförmigen Öffnung der Ablenkplatte gelenkt. Deren Durchmesser beträgt mindestens etwa das doppelte der Halbwertsbreite W der Stromdichteverteilung des Bildes der Strahlquelle in dieser Öffnung. Dadurch bleiben die zur Ausrichtung des Elektronenstrahles vorgenommenen Verschiebungen des Bildes der Strahlquelle ohne merklichen Einfluß auf den die zentrale Öffnung durchfließenden Elektronenstrom, der zur Auftreffplatte gelangt.

    Apparatus for contactless testing of electrical connections
    4.
    发明公开
    Apparatus for contactless testing of electrical connections 失效
    Vorrichtung zum kontaktlosen Testen von elektrischenAnschlüssen。

    公开(公告)号:EP0066071A1

    公开(公告)日:1982-12-08

    申请号:EP82103178.8

    申请日:1982-04-15

    IPC分类号: G01R31/28

    CPC分类号: G01R31/305

    摘要: The system tests the continuity of electrical conductors extending through an insulating layer without contact. A flood gun (11) irradiates one side of the body (18) to charge the exposed conductors to a given potential. A steerable electron beam (14) scans the front side to generate secondary electron emission from those conductors, which secondary emission is measured by a detector (24). The secondary emission is enhanced from conductors with conductivity between front side and back side as a result of the surface potential established by the rear flood beam (22). The secondary emission varies depending on the state of continuity in the three-dimensional network of conductors and produces signals at the detector (24) which allow clear discrimination between uninterrupted and interrupted conductors. The system is applicable for unfired ceramics where contact destroys the specimen.

    摘要翻译: 该系统测试延伸穿过绝缘层而不接触的电导体的连续性。 洪水枪(11)照射身体(18)的一侧,以将暴露的导体充电到给定的电位。 可操纵的电子束(14)扫描前侧以从这些导体产生二次电子发射,该二次发射由检测器(24)测量。 由于由后部泛光束(22)建立的表面电位的结果,二次发射被从前侧和后侧之间的具有导电性的导体增强。 二次发射根据导体的三维网络中的连续性状态而变化,并且在检测器(24)处产生信号,其允许在不间断和中断的导体之间的清楚区分。 该系统适用于接触破坏样品的未烧陶瓷。

    Telecentric sub-field deflection with a variable axis immersion lens
    6.
    发明公开
    Telecentric sub-field deflection with a variable axis immersion lens 失效
    Telezentrische Ablenkung aufSekundärfeldermittels einer Immersionslinse mit variabler Achse。

    公开(公告)号:EP0331859A2

    公开(公告)日:1989-09-13

    申请号:EP88480086.3

    申请日:1988-12-06

    CPC分类号: H01J37/141 H01J37/1474

    摘要: A two stage, electron beam projection system includes a target, a source of an electron beam and means for projecting an electron beam towards the target with its upper surface defining a target plane. A magnetic projection lens has a principal plane and a back focal plane located between said means for projecting and the target. The means for projecting provides an electron beam directed towards the target. First stage means provides deflection of the beam from area to area within a field. Second stage means provides for deflection of the beam for providing deflection of the beam within an area within a field. The beam crossing the back focal plane produces a telecentric condition of the beam in the image plane with the beam substantially normal to tghe target plane from the principal plane to the target plane. The magnetic projection lens includes a magnetic structure providing for magnetic compensation positioned within the bore of the projection lens, which produces a compensating magnetic field substantially proportional to the first derivative of the axial magnetic projection field. The axial magnetic projection field provides substantially a zero first derivative of the axial magnetic projection field in the vicinity of the target. The projection system projects on the target plane from the projection system as deflected by the upper and lower stages, at all times maintaining the telecentric condition of the electron beam at the target plane throughout the entire range of deflection of the beam, assuring minimum errors due to target height variations.

    摘要翻译: 两级电子束投影系统包括靶,电子束源和用于将电子束投射到靶的装置,其上表面限定目标平面。 磁性投影透镜具有位于所述投影装置和目标之间的主平面和后焦平面。 用于投射的装置提供指向靶的电子束。 第一级装置提供射束从场到场的区域的偏转。 第二级装置提供光束的偏转,以提供光束在场内的区域内的偏转。 与后焦平面交叉的光束在图像平面中产生光束的远心状态,其中光束基本上垂直于从主平面到目标平面的目标平面。 磁性投影透镜包括磁性结构,其提供定位在投影透镜的孔内的磁补偿,其产生与轴向磁场投影场的一阶导数成正比的补偿磁场。 轴向磁场投射场基本上提供了目标附近的轴向磁场投影场的零一阶导数。 投影系统从投影系统投射到投影系统上,由上下阶段偏转,始终将电子束的远心状态保持在目标平面的整个光束偏转范围内,确保最小误差 瞄准高度变化。

    Electron beam lithography system
    9.
    发明公开
    Electron beam lithography system 失效
    电子束光刻系统。

    公开(公告)号:EP0660370A3

    公开(公告)日:1997-02-26

    申请号:EP94480149.7

    申请日:1994-11-24

    IPC分类号: H01J37/317

    摘要: An electron beam system for direct writing applications combining the parallel throughput of a projection system and the stitching capability of a probe-forming system employs an electron gun to illuminate an initial aperture uniformly, a first set of controllable deflectors to scan the beam over the reticle parallel to the system axis, impressing the pattern of a subfield of the reticle in each exposure, in which a first variable axis lens focuses an image of the initial aperture on the reticle, a second variable axis lens collimates the patterned beam, a second set of controllable deflectors to bring the beam back to an appropriate position above the wafer, and a third variable axis lens to focus an image of the reticle subfield on the wafer, together with correction elements to apply aberration corrections that may vary with each subfield, thereby providing high throughput from the use of parallel processing of the order of 10 7 pixels per subfield with the low aberration feature of the variable axis lens and the ability to tailor location-dependent corrections that are associated with gaussian systems that stitch the image pixel by pixel.

    Telecentric sub-field deflection with a variable axis immersion lens
    10.
    发明公开
    Telecentric sub-field deflection with a variable axis immersion lens 失效
    具有可变轴倾斜透镜的电气子场偏移

    公开(公告)号:EP0331859A3

    公开(公告)日:1990-05-30

    申请号:EP88480086.3

    申请日:1988-12-06

    CPC分类号: H01J37/141 H01J37/1474

    摘要: A two stage, electron beam projection system includes a target, a source of an electron beam and means for projecting an electron beam towards the target with its upper surface defining a target plane. A magnetic projection lens has a principal plane and a back focal plane located between said means for projecting and the target. The means for projecting provides an electron beam directed towards the target. First stage means provides deflection of the beam from area to area within a field. Second stage means provides for deflection of the beam for providing deflection of the beam within an area within a field. The beam crossing the back focal plane produces a telecentric condition of the beam in the image plane with the beam substantially normal to tghe target plane from the principal plane to the target plane. The magnetic projection lens includes a magnetic structure providing for magnetic compensation positioned within the bore of the projection lens, which produces a compensating magnetic field substantially proportional to the first derivative of the axial magnetic projection field. The axial magnetic projection field provides substantially a zero first derivative of the axial magnetic projection field in the vicinity of the target. The projection system projects on the target plane from the projection system as deflected by the upper and lower stages, at all times maintaining the telecentric condition of the electron beam at the target plane throughout the entire range of deflection of the beam, assuring minimum errors due to target height variations.