摘要:
A heavy wall and high strength seamless steel pipe having high sour resistance is provided. In particular, a quenching and tempering treatment is conducted to adjust the yield strength to be higher than 450 MPa and adjust the wickers hardness HV5 that can be measured at an outermost side or an innermost side of the pipe under a 5 kgf load (test load: 49 N) to be 250 HV5 or less. In order to achieve this, surface layers are ground from surfaces by a depth of 0.3 mm or more in a wall thickness direction after the quenching treatment, or the quenching treatment is designed to include holding a heating temperature equal to or higher than the Ac3 transformation point for 120 seconds or more in an air atmosphere and then performing water-cooling in a nucleate boiling region or performing water-cooling in a film boiling region and then in a nucleate boiling region. As a result of this quenching treatment, the hardness of the surface layers decreases to 250 HV5 or less and a steel pipe that has an M-shape hardness distribution in which the maximum hardness appears at some point in the profile other than the center of the wall or a U-shape hardness distribution in which the hardness of the surface layers is the highest but not more than 250 HV5 or a flat shape hardness distribution can be obtained. As a result, the sour resistance is significantly improved.
摘要:
Provided is a high-strength seamless steel pipe for an oil country tubular goods having excellent sulfide stress corrosion cracking resistance. The high-strength seamless steel pipe for an oil country tubular goods has the composition which contains, by mass%, 0.20 to 0.50% C, 0.05 to 0.40% Si, 0.3 to 0.9% Mn, 0.015% or less P, 0.005% or less S, 0.005 to 0.1% Al, 0.008% or less N, more than 0.6% and 1.7% or less Cr, more than 1.0% and 3.0% or less Mo, 0.01 to 0.30% V, 0.001% or more and less than 0.01% Nb, 0.0003 to 0.0030% B, and 0.0030% or less O (oxygen). The high-strength seamless steel pipe for an oil country tubular goods has the microstructure where a volume fraction of a tempered martensitic phase is 95% or more, and prior austenitic grains have a grain number of 8. 5 or more, and a segregation degree index Ps which is defined by a formula Ps = 8.1 (X Si + X Mn + X Mo ) + 1.2X P relating to X M which is a ratio between a segregated portion content and an average content is set to less than 65. (Here, X M : (segregated portion content (mass%) of element M) / (average content (mass%) of element M))
摘要:
When the resistance to sulfide stress corrosion cracking is evaluated by applying a constant load stress σ (MPa) to a round bar tensile test specimen immersed in a test solution and checking whether failure occurs before a particular time passes, the round bar tensile test specimen including a parallel section, a shoulder section, and a grip section is used. In the round bar tensile test specimen, the shoulder section is formed by a curve having two or more radii of curvature, a radius of curvature R1 (mm) of a portion adjacent to the parallel section is 15 mm or more and satisfies (0.22σ - 119) ≤ R1 ≤ 100, a length X1 (mm) of a portion of the curve having the radius of curvature R1 in a longitudinal direction of the test specimen satisfies X1 ≥ √{(r/8) × (R1 - r 2 /4)} (r: radius (mm) of the round bar tensile test specimen in the parallel section), and the radius of curvature R1 is larger than other radii of curvature. Thus, even when the steel is a high-strength steel having a yield strength of 758 MPa or higher, the occurrence of the failure in the shoulder section is suppressed, and the resistance to sulfide stress corrosion cracking can be properly evaluated.
摘要:
Provided are a method for manufacturing a high strength stainless steel tube or pipe and a heat treatment equipment line for a high strength stainless steel tube or pipe in order to give stable product quality to a high Cr seamless steel tube or pipe which is subjected to a quenching and tempering treatment. Using an online heat treatment equipment for a seamless steel tube or pipe in which cooling facilities 4 which are capable of cooling a heat treated steel tube or pipe to a temperature of 20°C or lower are arranged on one of the ends or a portion of a heat treatment carrier line 3 which is arranged between the equipment for quenching 2 and the tempering furnace 5, by performing a heat treatment on a steel tube or pipe containing 14% or more of Cr in a manner such that a steel tube or pipe is cooled to a temperature of 20°C or lower after the steel tube or pipe has been cooled in a cooling process of a quenching treatment to a temperature of 50°C or lower and that the steel tube or pipe is thereafter subjected to a tempering treatment in order to manufacture a high strength stainless steel tube or pipe having stable quality.
摘要:
A seamless steel pipe has a composition containing, by mass%, C: 0.15 to 0.50%, Si: 0.1 to 1.0%, Mn: 0.3 to 1.0%, P: 0.015% or less, S: 0.005% or less, Al: 0.01 to 0.1%, N: 0.01% or less, Cr: 0.1 to 1.7%, Mo: 0.40 to 1.1%, V: 0.01 to 0.12%, Nb: 0.01 to 0.08%, Ti: 0.03% or less, and B: 0.0005 to 0.003%, has a structure composed of a tempered martensite phase as a main phase with a prior austenite grain size number of 8.5 or more, and has a hardness distribution in which in four portions 90° apart from each other in the circumferential direction, hardness is 295 HV10 or less in any one of an inner surface-side region at 2.54 to 3.81 mm from the inner surface of the pipe, an outer surface side-region at the same distance from the outer surface of the pipe, and a center of the thickness. Therefore, the seamless steel pipe has high strength of 110 ksi grade (yield strength: 758 MPa or more) and excellent SSC-resistance. The composition may further contain Cu and/or W and/or Ni and/or Ca.
摘要:
Provided is a high-strength seamless steel tube, having excellent resistance to sulfide stress cracking (SSC resistance), for oil wells. In particular, the seamless steel tube contains 0.15% to 0.50% C, 0.1% to 1.0% Si, 0.3% to 1.0% Mn, 0.015% or less P, 0.005% or less S, 0.01% to 0.1% Al, 0.01% or less N, 0.1% to 1.7% Cr, 0.4% to 1.1% Mo, 0.01% to 0.12% V, 0.01% to 0.08% Nb, and 0.0005% to 0.003% B or further contains 0.03% to 1.0% Cu on a mass basis and has a microstructure which has a composition containing 0.40% or more solute Mo and a tempered martensite phase that is a main phase and which contains prior-austenite grains with a grain size number of 8.5 or more and 0.06% by mass or more of a dispersed M 2 C-type precipitate with substantially a particulate shape.