摘要:
The invention relates to a detection method (300) of detecting a boundary in a second image data from an image dataset on the basis of a reference contour in a first image data from the image dataset, the detection method (300) comprising a generating step (320) for generating a reference profile using the first image data on the basis of a qualifying characteristic, the reference profile comprising a reference profile node defined on the basis of the reference contour, a selecting step (330) for selecting a target profile using the second image data on the basis of the reference profile, and a mapping step (335) for mapping the reference profile node into the second image data on the basis of the target profile, thereby detecting the second boundary. A reference profile generated on the basis of a qualifying characteristic is more accurate in detecting the boundary in the second image than an arbitrarily generated reference profile. Hence, the detection method (300) of the current invention is more accurate in detecting a boundary in a second image data from an image dataset on the basis of a reference contour in a first image data from the image dataset.
摘要:
An automatic quantitative analysis method is developed so as to analyze perfusion cardiovascular images. First the image registration per data set is performed so as to compensate for translation and rotation of the target region of interest over the acquisition time. Next a parameter, for example, a maximum intensity projection, is calculated in order to average out misalignments of the target region of interest within each data set. Finally, parameter registration is performed to calculate the co-ordinate translation matrix between the anatomically corresponding pixels within the target region of interest. The co-ordinate translation matrix can also be used to calculate local perfusion values.
摘要:
A method is developed for automatic analysis of the reliability of an automatic registration of perfusion cardiovascular MR images. A parameter, for example, a similarity measure between the successive images, is calculated first in order to quantify the success of the registration process between these images for the data set. A criterion is then introduced, for example a threshold is imposed on the similarity measure. The successively registered images that have a calculated similarity measure that exceeds the defined threshold are automatically accepted for further analysis.
摘要:
The invention relates to visualization of medical images, and in embodiments to the visualization of the left ventricle of the human heart or other organs. A method of visualizing one or more sets of voxel data is disclosed. The method comprising: providing one or more sets of voxel data, providing and segmenting the voxel data in accordance with a segment model. The segmented voxel data is reformatted to fit a reference shape (20) being defined by at least an inner (22) reference surface and an outer (23) reference surface. The reformatted voxel data is mapped to a target shape being defined by at least a first (29) target surface and a second (200) target surface. The target shape is moreover visualized. The mapping of the reformatted voxel data to a target shape is a mapping of one or more property values from the inner reference surface to the first target surface, and from the outer reference surface to the second target surface, and where a direction (26, 27) extending along the inter- surface distance of the reference shape is maintained in the target shape.
摘要:
The invention relates to a method of combining magnetic resonance (MR) images to form a combined image, to a device for implementing such a method, and to a computer program comprising instructions for performing such a method when the computer program is run on a computer. Large transitions in pixel values in such combined images could make visual interpretation of the combined image difficult. A method of combining MR images to form a combined image that is easier to interpret visually is therefore desirable. Accordingly, a method of forming a combined image is disclosed, wherein pixel intensity values of at least one of the images is modified based on an interpolation operation, and the two MR images are suitably merged to form a combined image.
摘要:
A method is disclosed for improving the accuracy of a surface mesh describing a segmented 3D object in a 3D image. A dual triangulation surface mesh is provided for a simplex surface mesh of the 3D object. Errors are reduced in the representation of the 3D object caused by the dual triangulation surface mesh by shifting triangulation nodes of the dual triangulation surface mesh of the segmented 3D object for providing a more accurate triangulation surface mesh. The 3D image is preferably a medical 3D image. Furthermore, a medical workstation, comprised in medical imaging system is disclosed for implementing the above improvement.
摘要:
A method of correcting local distortions in 3D images, particularly medical 3D images, caused by a scanning system used for acquisition of the 3D images, is disclosed. According to an embodiment, a 3D phantom containing reference structures that are positioned at known reference positions is scanned. Then the resulting positions of the phantom reference structures in the 3D image are detected and the 3D image is subdivided into 3D sub- volumes, called patches. Subsequently the detected positions of the reference structures are compared to the known reference positions for each patch, and for each patch having distortions existing between known reference and detected positions, the distortion is described with a local 3D transformation according to the invention. Finally, medical images that are subsequently scanned are corrected with the local 3D transformations.