摘要:
The invention relates to a system for processing a series of image frames representing a cardiac cycle, at least comprising input or data collection means for collecting the series of image frames, a memory inter alia for storing and retrieving said series of image frames, a processor for processing the frames, and display means, whereby in use the processor processes the frames to identify from said series of images a frame or frames representing a pre-determined phase of the cardiac cycle whereby the processor compares images from said series of image frames and establishes a measure of identity between such frames, whereby the processor applies said measure of identify to identify the phase of the cardiac cycle pertaining to such frames.
摘要:
The invention relates to the analysis of successive data sets. A local intensity variation is formed from such successive data sets, that is, from data values in successive data sets at corresponding positions in each of the data sets. A region of interest is localized in the individual data sets on the basis of the local intensity variation. In particular the time derivative of the local intensity variation is used to localize the region of interest. The invention can be used notably for cardiological applications so as to separate the image of the myocardium from a sequence of 3D magnetic resonance reconstruction images.
摘要:
A method for magnetic resonance imaging of a part of a human body arranged in a steady magnetic field. The part of the body to be imaged may contain, for example a coronary artery in the vicinity of the heart. Other feasible parts are, for example joints or the cruciate ligaments. To this end, two MR images are made of the coronary artery extending between the first imaging plane and the second imaging plane of the first and the second MR image, respectively, a first cross section of the coronary artery being reproduced in the first MR image whereas a second cross section of the coronary artery is reproduced in the second MR image. Subsequently, a third imaging plane for a third MR image is determined by an operator who determines two points by indicating, in the first and the second image, points of intersection of the first and the second cross section of the coronary artery in the first and the second imaging plane. The adjusting parameters for forming a third MR image of the third imaging plane are subsequently calculated on the basis of these points of intersection and a third point that can be chosen at liberty. The third MR image then largely reproduces the coronary artery, except when the coronary artery is strongly curved.
摘要:
A method for acquiring MR image data pertaining an organ, moving between a first extreme and a second extreme position such as in motion due to breathing of the patient to be examined. A scout film is registered of the organ concurrently with the registration of a signal that is indicative for the position of such organ . Real-time MR image data are acquired in at least one scan-plane of said organ, and the scan-plane is adjusted depending on the concurrently measured signal estimating the position of said organ. Several scan-planes are employed. For each individual scan-plane of said plurality of scan-planes, its position as a function of time is defined in relation to pre-selected organ-positions is measured with the scout-film. During the acquisition of the real-time MR image data the respective scan-positions are each individually adjusted, each scan-plane position thereby depending on the signal indicative for the position of the organ. In particular the invention is used in cardiac MR-imaging.
摘要:
A method for acquiring MR image data pertaining an organ, moving between a first extreme and a second extreme position such as in motion due to breathing of the patient to be examined. A scout film is registered of the organ concurrently with the registration of a signal that is indicative for the position of such organ . Real-time MR image data are acquired in at least one scan-plane of said organ, and the scan-plane is adjusted depending on the concurrently measured signal estimating the position of said organ. Several scan-planes are employed. For each individual scan-plane of said plurality of scan-planes, its position as a function of time is defined in relation to pre-selected organ-positions is measured with the scout-film. During the acquisition of the real-time MR image data the respective scan-positions are each individually adjusted, each scan-plane position thereby depending on the signal indicative for the position of the organ. In particular the invention is used in cardiac MR-imaging.