摘要:
The present invention relates to iso-centering an object of interest prior to computer tomography (CT) scanning for examination of a patient in a C-arm CT examination apparatus. In order to provide facilitated positioning and to overcome or at least minimize these drawbacks, a C-arm CT examination apparatus (10) for CT scanning for examination of a patient is provided. The apparatus comprises a patient support unit, an acquisition unit, a data processing and control unit, and a display unit. The patient support unit is configured to bed a patient, free of motion, on the patient support. The acquisition unit is configured to acquire scout images of the patient including the object of interest in a respective position of the apparatus having position parameters. The data processing and control unit is configured to store the images and at least one respective position parameter including the iso-center position relative to the image; and to adjust the position of the apparatus roughly into a present position for CT scanning of the object of interest; and to select at least one iso-centering image from the stored images and, by geometrical calculation using, firstly, the at least one stored position parameter of the iso-centering image including the stored iso-center position and using, secondly, at least one position parameter of the present position of the apparatus including the present iso-center, adopting the appearance of the at least one iso-centering image, such that the appearance of the iso-centering image is according to the present position of the C-arm including the present iso-center. The display unit is configured to display the at least one adopted image on a display device together with and relative to a representation of the present iso-center for iso-centering.
摘要:
The present invention relates to guidance during examinations or interventional procedures. In order to facilitate information provision in a medical environment such as an operation room or cathlab, an augmented reality display device (10) for medical equipment is provided that comprises a data input unit (12), a processing unit (20) and a display unit (22). The data input unit is configured to receive displayed operation parameters (14) of at least one medical appliance. The data input unit is also configured to receive relative location information (16) of at least one medical appliance in relation to the display unit and a viewing direction information (18) of the user. The processing unit is configured to detect if at least one of the medical appliances is in the user's field of view based on the relative location information and the viewing direction information. The processing unit is further configured to generate display data based on the operation parameters of the detected medical appliance. The display unit is configured to project information (24) related to the operation parameters of the medical appliance visible for the user based on the display data if the medical appliance is in the user's field of view. The display unit is configured to display the information as visible representation overlaid to reality.
摘要:
The present invention relates to tracking an interventional device. In order to provide a facilitated and simplified real-time tracking of an interventional device, a medical imaging system (10) for tracking an interventional device is provided, that comprises an interface unit (12), and a processing unit (14).The interface unit is configured to provide first image data (18) of a first part of an interventional device, which first part is arranged outside an object. The first image data comprises 3D image data. The interface unit is configured to provide second image data (20) of a second part of the interventional device, which second part is a continuation of the first part, and which second part is arranged inside the object. The second image data comprises 2D image data. The processing unit is configured to compute a first 3D model portion of the interventional device based on the first image data, and to compute a second 3D model portion of the interventional device based on the second image data and the first model portion. The interface unit is configured to provide data of a graphical representation (22) of the interventional device based on the first and second 3D model portions.
摘要:
An adaptive X-ray anti-scatter device (20) for placement in the source-detector axis (22) of an X-ray imager (8) comprising: - an anti-scatter filter having a source orientable surface and a detector orientable surface, wherein the anti-scatter filter comprises a plurality of realignable slats (24) for absorbing incident X-rays, wherein the slats are separated by a plurality of interstitial portions (26); and - a first actively deformable member (26a) comprising a first set of one or more actively deformable actuators (28a, 28b) disposed across a first region of the first actively deformable member (26a), wherein one or more actively deformable actuators of the first set of one or more actively deformable actuators are configured to change the alignment of a corresponding of slat of the anti-scatter filter in relation to the source-detector axis, wherein at least a portion of each actuator of the first set of one or more actively deformable actuators is partially or fully recessed within the interstitial portions of the anti-scatter filter, and at least one actuator of the first set of one or more actively deformable actuators is in contact with at least one realignable slat of the plurality of slats, so that a deformation of the at least one actuator of the first set of one or more actively deformable actuators of the one or more actively deformable actuators causes a corresponding change to the alignment of the at least one corresponding slat from a first alignment to a second alignment relative to the source-detector axis.
摘要:
An imaging system for tracking brain deformation, a method for tracking brain deformation, a method of operating a device for tracking brain deformation are disclosed. A first 3D representation (112) of a cerebrovascular vessel structure of a region of interest of an object is provided (110), and (114) a second 3D representation (116) of the cerebrovascular vessel structure are used to determine brain deformation. At least a part of the first 3D representation is elastically three-dimensionally registered (118) with at least a part of the second 3D representation. A deformation field (122) of the cerebrovascular vessel structure is determined (120) based on the elastic registration. The determined vessel deformation is applied (124) to a brain structure representation to determine a deformation (126) of the cerebral structure.