摘要:
Disclosed are an apparatus and method for continuously producing carbon nanotubes. More specifically, disclosed are an apparatus for continuously producing carbon nanotubes including i) a reactor to synthesize carbon nanotubes, ii) a separator to separate a mixed gas from the carbon nanotubes transferred from the reactor, iii) a filter to remove all or part of one or more component gases from the separated mixed gas, and iv) a recirculation pipe to recirculate the filtered mixed gas to the reactor for carbon nanotubes. Advantageously, the apparatus and method for continuously producing carbon nanotubes enable rapid processing, exhibit superior productivity and excellent conversion rate of a carbon source, significantly reduce production costs, reduce energy consumption due to decrease in reactor size relative to capacity, and generate little or no waste gas and are thus environmentally friendly.
摘要:
The present invention provides a catalyst for use in gas-phase contact oxidation of hydrocarbon with an improved yield and selectivity, a preparation method thereof, and a method of a gas-phase oxidation of the hydrocarbon using the same. The catalyst comprises a composite metal oxide of Mo, V, Te and Nb; and a palladium or palladium oxide attached to the composite metal oxide, wherein an atomic molar ratio of the palladium attached to the composite metal oxide to the molybdenum contained in the composite metal oxide ranges from 0.00001:1 to 0.02:1.
摘要:
The present invention provides a catalyst for use in gas-phase contact oxidation of hydrocarbon with an improved yield and selectivity, a preparation method thereof, and a method of a gas-phase oxidation of the hydrocarbon using the same. The catalyst comprises a composite metal oxide of Mo, V, Te and Nb; and a tungsten or tungsten oxide attached to the composite metal oxide, wherein an atomic molar ratio of the tungsten attached to the composite metal oxide to the molybdenum contained in the composite metal oxide ranges from 0.00001:1 to 0.02:1.
摘要:
The present invention relates to a continuous manufacturing apparatus for a carbon nanotube having gas separation units and a continuous manufacturing method for a carbon nanotube using the same. According to the present invention, the present invention has an effect to provide the continuous manufacturing apparatus of the carbon nanotube and continuous manufacturing method using the same, in which it makes possible to perform a rapid processing; has excellent productivity and excellent conversion rate of carbon source; can significantly reduce the cost of production; can reduce energy consumption because a reactor size can be decreased as compared with capacity; and a gas separation unit that not generate a waste gas.