摘要:
Disclosed is a device for continuously preparing an inorganic slurry by a hydrothermal method including a precursor liquid or slurry stream containing a precursor for preparing an inorganic substance, a supercritical liquid stream containing high-temperature and high-pressure water, and a reactor into which the precursor liquid or slurry stream and the supercritical liquid stream are injected, and from which an inorganic slurry obtained as a reaction product of hydrothermal reaction between the precursor liquid or slurry stream and the supercritical liquid stream is continuously discharged, wherein an injection direction of the precursor liquid or slurry stream forms an angle of 0 to 60 degrees with respect to a discharge direction of an inorganic slurry stream (inorganic substance stream) containing the inorganic slurry in the reactor.
摘要:
Disclosed is a method of preparing inorganic particles using a hydrothermal synthesis device, including introducing a precursor liquid or slurry stream including a reaction precursor for preparation of an inorganic material into a hydrothermal synthesis reactor, introducing a supercritical liquid stream including water into the hydrothermal synthesis reactor, preparing an inorganic slurry by hydrothermal reaction in the hydrothermal synthesis reactor and discharging the inorganic slurry therefrom, and filtering the discharged inorganic slurry, wherein the precursor liquid or slurry stream includes an NH 3 source at a high temperature of the supercritical liquid stream and thus clogging of the stream in the hydrothermal synthesis reactor is inhibited by pH changes in the hydrothermal reaction.
摘要:
Disclosed is a hydrothermal synthesis device for continuously preparing an inorganic slurry using a hydrothermal method. The hydrothermal synthesis device includes a mixer to mix at least one precursor solution for preparing an inorganic material, injected via at least one supply tube, to prepare an intermediate slurry, a connection tube provided at a side of the mixer, continuously discharging the prepared intermediate slurry to a reactor, and having a hydrophobic coating on an inner surface of a portion thereof adjacent to the reactor, andthe reactor performing hydrothermal reaction of the intermediate slurry supplied from the connection tube by receiving a liquid stream heated to supercritical or subcritical conditions using a heat exchanger and connected to the connection tube into which the intermediate slurry prepared from the mixer is introduced and to at least one injection tube into which the heated liquid stream is injected.
摘要:
Disclosed is lithium iron phosphate having an olivine crystal structure, wherein the lithium iron phosphate has a composition represented by the following Formula 1, a sulfur compound with a sulfide bond is contained, as an impurity, in the lithium iron phosphate particles, and carbon (C) is coated on particle surfaces of the lithium iron phosphate:
Li 1+a Fe 1-x M x (PO 4-b )X b (1)
(wherein M, X, a, x, and b are the same as defined in the specification).
摘要:
Provided is a composite electrode for a lithium secondary battery for improving output and a lithium secondary battery including the composite electrode, in which, in a composite electrode having two or more active materials mixed therein, an active material having a small particle size is included in the composite electrode by being coagulated and secondarily granulated so as to allow mixed active material particles to have a uniform size, and thus, electrical conductivity is improved to have high output characteristics.
摘要:
Disclosed is lithium iron phosphate having an olivine crystal structure, wherein the lithium iron phosphate has a composition represented by the following Formula 1 and carbon (C) is coated on the particle surface of the lithium iron phosphate containing a predetermined amount of sulfur (S).
Li 1+a Fe 1-x M x (PO 4-b )X b (1)
(wherein M, X, a, x, and b are the same as defined in the specification).
摘要翻译:公开了具有橄榄石晶体结构的磷酸铁锂,其中磷酸铁锂具有由下式1表示的组成,并且碳(C)涂覆在含有预定量硫(S)的磷酸铁锂的颗粒表面上, 。 ƒ€ƒ€ƒ€ƒ€ƒ€ƒ€ƒLi1 + a Fe 1-x M x(PO 4-b)X b€ƒ€€ƒ€ƒ(1)(其中M, X,a,x和b与说明书中定义的相同)。
摘要:
Disclosed is lithium iron phosphate having an olivine crystal structure wherein carbon (C) is coated on particle surfaces of the lithium iron phosphate, wherein, when a powder of the lithium iron phosphate is dispersed in water, water is removed from the resulting dispersion and the resulting lithium iron phosphate residue is quantitatively analyzed, a ratio of the carbon-released lithium iron phosphate with respect to the total weight of the carbon-coated lithium iron phosphate is 0.005% by weight or less. Advantageously, the olivine-type lithium iron phosphate is not readily separated through uniform thin film coating on the surface of the lithium iron phosphate and exhibits superior conductivity and density, since carbon is coated on particle surfaces of lithium iron phosphate in a state in which the amount of carbon released in water is considerably small.
摘要:
Disclosed is a hydrothermal synthesis device for continuously preparing an inorganic slurry using a hydrothermal method. The hydrothermal synthesis device includes a mixer to mix at least one precursor solution for preparing an inorganic material, injected via at least one supply tube, to prepare an intermediate slurry, a connection tube provided at a side of the mixer, continuously discharging the prepared intermediate slurry to a reactor, and having an inner surface contacting a precursor solution mixture on which abrasive polishing has been performed, and the reactor performing hydrothermal reaction of the intermediate slurry supplied from the connection tube by receiving a liquid stream heated to supercritical or subcritical conditions using a heat exchanger and connected to the connection tube into which the intermediate slurry prepared from the mixer is introduced and to at least one injection tube into which the heated liquid stream is injected.
摘要:
Disclosed is lithium iron phosphate having an olivine crystal structure wherein carbon (C) is coated on particle surfaces of the lithium iron phosphate, wherein, when a powder of the lithium iron phosphate is dispersed in water, water is removed from the resulting dispersion and the resulting lithium iron phosphate residue is quantitatively analyzed, a ratio of the carbon-released lithium iron phosphate with respect to the total weight of the carbon-coated lithium iron phosphate is 0.005% by weight or less. Advantageously, the olivine-type lithium iron phosphate is not readily separated through uniform thin film coating on the surface of the lithium iron phosphate and exhibits superior conductivity and density, since carbon is coated on particle surfaces of lithium iron phosphate in a state in which the amount of carbon released in water is considerably small.