摘要:
A method for producing isolatable oxide microparticles or hydroxide microparticles using an apparatus that processes a fluid between processing surfaces of processing members that are arranged opposite each other so as to be able to approach to or separate from each other and such that at least one can rotate relative to the other. Using an apparatus that processes a fluid between processing surfaces (1 and 2) of processing members (10 and 20) that are arranged opposite each other so as to be able to approach to or separate from each other and such that at least one can rotate relative to the other, at least two fluids are mixed and oxide microparticles or hydroxide microparticles are separated, said two fluids including: a fluid containing a microparticle raw material solution comprising a microparticle raw material mixed into a solvent, and a fluid containing a microparticle-separation solution. Immediately thereafter, the following are mixed to obtain isolatable oxide microparticles or hydroxide microparticles: a fluid containing the separated oxide microparticles or hydroxide microparticles; and a fluid containing a microparticle-treatment-substance-containing solution that contains a microparticle-treatment substance that adjusts the dispersibility of the separated oxide microparticles or hydroxide microparticles.
摘要:
The problem addressed by the present invention is providing a fluid processing method including extraction that can extract material to be extracted continuously with high efficiency. In a thin film fluid formed between at least two processing surfaces (1, 2) disposed facing eaxh other so as to be able to approach to and separate from each other such that at least one rotates relative to the other, a fluid processing that extracts at least one kind of material to be extracted in at least one kind of the extraction solvent that can extract that material to be extracted is carried out. In addition, the fluid containing at least one kind of material to be extracted and a fluid for extraction that contains the at least one kind of extraction solvent are mixed in the thin film fluid formed between the at least two processing surfaces (1, 2) disposed facing each other so as to be able to approach to and separate from each other such that at least one rotates relative to the other, and a fluid processing process that extracts the at least one kind of material to be extracted into the at least one kind of extraction solvent is carried out.
摘要:
The present application provides a microsphere in which a main agent is uniformly dispersed in a polymer matrix, wherein an average volume-based particle diameter of the microsphere is 1 µm or more and 150 µm or less, and a variation coefficient of area ratios in four regions is 0.35 or less, wherein the area ratios in four regions are calculated by (s / A) × 100 (%) wherein the four regions are prepared by preparing a cross section observation sample obtained by cutting the microsphere; observing the cross section observation sample with an electron microscope at a magnification capable of confirming the main agent in the microsphere or a higher magnification; and dividing the electron microscope observation image into four regions; and A is an area of a respective divided region, and s is a sum of cross section areas of the main agent included in the respective divided region. The microsphere of the present invention can appropriately control the initial release amount of the main agent and its release rate during a subsequent release period, and can continuously release the main agent for a predetermined period of time.
摘要:
The problem addressed by the present invention is to provide; solid solution pigment nanoparticles having a homogeneous solid solution ratio; a method for producing solid solution pigment nanoparticles having a homogeneous solid solution ratio in each primary particle; and a method for controlling the solid solution ratio of solid solution pigment nanoparticles. The solid solution pigment nanoparticles are prepared by precipitating at least two types of pigment by mixing a pigment precipitation solvent and; at least one type of pigment solution characterized in that at least two types of pigment are dissolved in a solvent: or at least two types of pigment solution characterized in that at least one type of pigment is dissolved in a solvent. The solid solution pigment nanoparticles are characterized in that the solid solution ratio of the at least two types of pigment in the primary particles of the precipitated solid solution pigment nanoparticles with respect to the ratio of the at least two types of pigment in the pigment solution mixed with the pigment precipitation solvent having a precision within 25%.
摘要:
The present application provides a microsphere comprising a lactic acid-glycolic acid copolymer (PLGA) or polylactide (PLA) as a main component, in which a biologically active substance is uniformly dispersed, wherein an average volume-based particle diameter of the microsphere is 1 µm or more and 150 µm or less, and a variation coefficient of area ratios in six regions is 0.35 or less, wherein the area ratios in six regions are calculated by (s / A) × 100 (%) wherein the six regions are prepared by preparing a cross section observation sample obtained by cutting the microsphere; observing the cross section observation sample with an electron microscope at a magnification capable of confirming the biologically active substance in the microsphere or a higher magnification; and dividing the electron microscope observation image into six regions; and A is an area of a respective divided region, and s is a sum of cross section areas of the biologically active substance included in the respective divided region. The microsphere of the present invention can appropriately control the initial release amount of the biologically active substance and its release rate during a subsequent release period, and can continuously release the biologically active substance in vivo for a predetermined period of time.
摘要:
The problem addressed by the present invention is to provide a high heat-resistant phthalocyanine. The phthalocyanine is separated by mixing a phthalocyanine separation solvent and a phthalocyanine solution characterized in that a phthalocyanine starting material is dissolved in a solvent. The phthalocyanine is characterized by having high heat resistance, the decomposition temperature of the separated phthalocyanine being at least 10°C higher than the decomposition temperature of the phthalocyanine starting material. Also, the phthalocyanine solution may be the result of dissolving at least two types of phthalocyanine starting material in the solvent, the separated phthalocyanine being characterized by containing a solid solvent of the at least two types of phthalocyanine starting material and by the decomposition temperature of the separated phthalocyanine being at least 10°C higher than the decomposition temperature of a mixture of at least two types of phthalocyanine separated by mixing the phthalocyanine separation solvent and each of at least two types of phthalocyanine solution resulting from dissolving each of the at least two types of phthalocyanine starting material in a solvent.
摘要:
Provided are a method for producing organic material microparticles and a method for modifying organic material microparticles, whereby it becomes possible to improve the crystallinity of organic material microparticles or achieve the crystal transformation of the organic material microparticles while preventing the growth of the organic material microparticles in a solvent. A surfactant is added to a solvent that is capable of partially dissolving organic material microparticles, and then the organic material microparticles are reacted with the solvent. In this manner, it becomes possible to improve the degree of crystallization of the organic material microparticles or achieve the crystal transformation of the organic material microparticles without substantially altering the particle diameters of the organic material microparticles.
摘要:
Provided is a method for preventing a processed material from adhering to a processing surface constituting a flow path for a fluid to be processed, in a fluid processing method for mixing a fluid to be processed in a thin film fluid formed between at least two oppositely arranged processing surfaces capable of being brought together and moved apart, at least one rotating in a relative manner with respect to the other; and for obtaining a processed material. There are used at least two types of fluids to be processed among a raw material fluid including at least one type of raw material substance, and a fluid for processing the raw material substance; the fluids to be processed are mixed in a thin film fluids formed between at least two oppositely arranged processing surfaces (1, 2) capable of being brought together and moved apart, at least one rotating in a relative manner with respect to the other; and a processed material is obtained. The raw material fluid is introduced from the middle of the processing surfaces (1, 2), whereby the raw material substance processed in the space between the processing surfaces (1, 2) is prevented from adhering to the processing surfaces (1, 2).
摘要:
The present application provides approximately spherical lactic acid-glycolic acid copolymer (PLGA) microparticles comprising a biologically active substance, wherein an average volume-based particle diameter of the PLGA microparticles is 1 µm or more and 150 µm or less, and a Reactive Span Factor (R.S.F.) of the PLGA microparticles is satisfied with formula (1): 0.1
摘要:
The object of the present invention is to provide a coloring ultraviolet protective agent in which the average molar absorption coefficient in the wavelength range from 200 nm to 380 nm is increased, and the color characteristics in the visible region are controlled. The present invention provides a coloring ultraviolet protective agent, which is useful for shielding ultraviolet rays and coloring, wherein the coloring ultraviolet protective agent comprises M2 doped oxide particles in which oxide particles (M1Ox) comprising at least M1 being a metal element or metalloid element, are doped with at least one M2 selected from metal elements or metalloid elements other than M1, wherein x is an arbitrary positive number, wherein an average molar absorption coefficient in the wavelength range of 200 nm to 380 nm of a dispersion in which the M2 doped oxide particles are dispersed in a dispersion medium, is improved as compared with one of a dispersion in which the oxide particles (M1Ox) are dispersed in a dispersion medium, and wherein a hue or chroma of color characteristics in the visible region of the M2 doped oxide particles is controlled.