摘要:
A high capacity negative electrode for a non-aqueous electrolyte secondary battery which has low declining rate in discharge capacity caused by charge/discharge cycles by improving the electronic conductivity on the surface of the particles of the negative electrode material. The negative electrode material is formed by coating part of or the entire surface of solid phase A comprising a nucleus particle with the solid phase B. The solid phase A contains silicon as a constituent element. The solid phase B is composed of a solid solution or intermetallic compounds composed of silicon and at least one another element selected from a group comprising of group 2 elements, transition elements, group 12 elements , group 13 elements and group 14 elements (exclusive of carbon and silicon) of the Periodic Table.
摘要:
A high capacity negative electrode for a non-aqueous electrolyte secondary battery which has low declining rate in discharge capacity caused by charge/discharge cycles by improving the electronic conductivity on the surface of the particles of the negative electrode material. The negative electrode material is formed by coating part of or the entire surface of solid phase A comprising a nucleus particle with the solid phase B. The solid phase A contains silicon as a constituent element. The solid phase B is composed of a solid solution or intermetallic compounds composed of silicon and at least one another element selected from a group comprising of group 2 elements, transition elements, group 12 elements , group 13 elements and group 14 elements (exclusive of carbon and silicon) of the Periodic Table.
摘要:
A lithium ion secondary battery includes a positive electrode capable of absorbing and desorbing lithium ion, a negative electrode capable of absorbing and desorbing lithium ion, a porous film interposed between the positive electrode and the negative electrode, and a non-aqueous electrolyte, the porous film being adhered to a surface of at least the negative electrode. The porous film includes an inorganic filler and a first binder: The content of the first binder in the porous film is 1.5 to 8 parts by weight per 100 parts by weight of the filler: The first binder includes a first rubber including an acrylonitrile unit: The first rubber is water-insoluble and has a decomposition temperature of 250 °C or higher. The negative electrode includes a negative electrode active material capable of absorbing and desorbing lithium ion and a second binder, and the second binder includes a second rubber particle and a water-soluble polymer.
摘要:
100 parts by weight of a carbon material having irreversible capacity and 20 to 150 parts by weight of a lithium-containing complex nitride represented by the general formula Li 3-X M X N wherein M is at least one selected from the group consisting of Co, Ni, Mn and Cu, and wherein 0.2≦X≦0.8, are included in a negative electrode thereby to compensate for the irreversible capacity of the carbon material by the above-described nitride. This enables the maximum utilization of large capacity possessed by an amorphous carbon or low crystalline carbon, thereby making it possible to provide a non-aqueous electrolyte secondary battery having high capacity and excellent cycle reversibility.
摘要:
The present invention relates to non-aqueous electrolyte secondary batteries comprising an positive electrode and a negative electrode capable of intercalating and de-intercalating lithium, a non-aqueous electrolyte and separators or solid electrolytes. The negative electrode contains, as a main component , composite particles constructed in such a manner that at least part of the surface of nuclear particles comprising at least one of tin, silicon and zinc as a constituent element, is coated with a solid solution or an inter-metallic compound composed of the element included in the nuclear particles and another predetermined element which is not an element included in the nuclear particles. To improve the ability of the battery, the composite particles mentioned above can include at least one trace element selected from iron, lead and bismuth. The porosity of a mixture layer at the negative electrode is 10% or more and 50% or less. The amount of the non-aqueous electrolyte, the thickness of the separators or the like is restricted in a specific value. The foregoing construction suppresses occurrence of an internal short circuit between the positive electrode and the negative electrode caused by expansion of the negative electrode materials , thereby achieving a high capacity battery with a superior charge/discharge cycle properties, which is suitable for a high-speed charging.
摘要:
A lithium secondary battery including: an electrode group, a non-aqueous electrolyte and a battery case housing the electrode group and the non-aqueous electrolyte, the electrode group including a positive electrode, a negative electrode and a separator layer interposed between the positive electrode and the negative electrode, wherein an end-of-charge voltage and an end-of-discharge voltage are set in such a manner that the electrode group has an energy density of not less than 700 Wh/L, the separator layer includes a porous heat-resistant layer, and a short circuit area A produced when an internal short circuit has occurred between the positive electrode and the negative electrode, and a reduced area B of the porous heat-resistant layer that is produced by heat generation satisfy 1 ≦ (A + B)/A ≦ 10.
摘要:
The present invention provides a battery-driven electronic device for which a long time use of the battery can be achieved and mobile communications equipment such as a portable telephone. Even if the time at which the output voltage of a battery 201 becomes below the supply voltage required by a load 206 including a power amplifier for wireless communications comes earlier than a conventional lithium ion battery because of its discharge characteristics that the battery voltage change ratio is 0.25 or more, a step-up and -down converter 200 operates as follows. When the output voltage of the battery is higher than the supply voltage required by the load, the voltage is set to a predetermined supply voltage by the step-down operation mode. When the output voltage of the battery is decreased and becomes lower than the supply voltage required by the load, the voltage is set to a predetermined supply voltage by the step-up operation mode. Thus, even for a battery employing a new material having a high energy density, a long term use of the battery can be achieved.