摘要:
The invention provides a composition for forming transparent conductive film, characterized by including a binder component, and a conductive powder and a high-refractive index powder which are dispersed in the binder component, wherein the conductive powder is formed of tin hydroxide powder in an amount of 0.1 to 30 mass% and a conductive powder other than tin hydroxide powder in an amount of 70 to 99.9 mass%. The composition can form a transparent conductive film that exhibits remarkably excellent scratch resistance, excellent antistatic effect, and has very high visible light transmittance and which can impart a desired refractive index to the film. The invention also provides such a transparent conductive film and a display having such a transparent conductive film on a screen thereof.
摘要:
Through employment of a binder component, tin hydroxide powder serving as a conductive powder, and a high-refractive index powder; through dispersal of tin hydroxide powder and light-transmission-ensuring microparticles in a binder component at a predetermined ratio; and through employment of a specific binder component and, as a conductive powder, tin hydroxide powder and a conductive powder other than tin hydroxide powder at a predetermined ratio, there can be provided a composition which can form a transparent conductive film that exhibits excellent antistatic effect, and has very high visible light transmittance and provides transmitted images with natural hue by virtue of no color absorption wherein, if desired, the film also exhibits excellent scratch resistance and high antiglare effect, or the refractive index of the film can be controlled; such a transparent conductive film, and a display having such a transparent conductive film on a screen thereof.
摘要:
The present invention provides a zirconium oxide dispersion which contains zirconium oxide particles, a metal complex, and a dispersion medium and which has excellent storage stability; a photo-curing composition containing zirconium oxide particles which contains zirconium oxide particles, a metal complex, an actinic energy ray-curing compound, a photopolymerization initiator, and a dispersion medium and which composition can form, on a surface of a substrate, a cured film having excellent transparency and high refractive index, and which composition does not corrode a metal-made apparatus employed in a dispersion process and a coating apparatus; and a cured film produced by applying onto a substrate the photo-curing composition containing zirconium oxide particles through coating or printing, followed by hardening.
摘要:
An ink composition for inkjet printing that in the printing by means of an inkjet printer, is free from nozzle clogging to thereby enable obtaining a print of desirable printing quality, and that can ensure appropriate drying rate for printing and further excels in color development. There is provided an ink composition for inkjet printing, comprising a pigment, a binder resin, a pigment dispersant and a solvent, wherein the solvent is composed of (1) at least one glycol ether and at least one of a lactone compound and 2-pyrrolidone, or (2) at least one glycol ether acetate and at least one of cyclohexanone and isophorone.
摘要:
The invention provides a transparent-film-forming composition containing at least one microparticle-form inorganic substance having a refractive index of 1.80 or higher and lower than 3.00 (ingredient A), at least one microparticle-form inorganic substance having a refractive index of 1.55 or higher and lower than 1.80 (ingredient B), and a binder having a refractive index lower than that of the ingredient B, and preferably, a dispersion stabilizer, and being capable of forming, on a surface of a transparent substrate, a transparent film having excellent transparency and free from interference-related disturbance. The invention also provides a transparent-film-layered product having a transparent substrate and, on a surface of the substrate, a transparent film formed from the composition, which layered product exhibits a difference in refractive index between the transparent substrate and the transparent film of 0.03 or smaller and excellent transparency, and providing minimized interference-related disturbance.