摘要:
The invention relates to a method and an installation for producing a concentrate of aromatic hydrocarbons from light aliphatic hydrocarbons and from mixtures thereof with oxygenates. According to the method, an initial raw material is fed into two in-series-connected reaction units, a first unit and a second unit, with zeolite catalysts based on a pentasil group; the reaction units are distinguished through the conditions for converting the hydrocarbons to aromatic hydrocarbons; a mixture obtained following the reaction units is separated into a liquid fraction and a gas fraction, and the gas fraction is fed to the inlet of the first and second reaction unit. The method is characterized in that the gas fraction obtained following the reaction units is separated into a hydrogen-containing gas and into a broad fraction of light hydrocarbons, containing olefins, and in that the hydrogen-containing gas is fed into an oxygenate synthesis unit, in that the resultant oxygenates are fed to the inlet of the first and second reaction unit, and in that the broad fraction of light hydrocarbons, containing olefins, is fed to the inlet of the first reaction unit. The use of the present invention allows for increasing the efficiency of producing concentrates of aromatic hydrocarbons and for increasing selectivity in regard to alkyl benzoles, and specifically xylenes.
摘要翻译:本发明涉及一种方法和设备用于从光脂肪烃类和从它们的混合物与含氧化合物生产芳族烃的浓缩物。 。根据该方法,上初始原料被送入两个同串联连接的反应单元,第一单元和第二单元,与基于硼碳烷硅酮沸石组催化剂; 反应单元通过用于将所述烃芳族烃的条件来区分; 后获得的反应单元的混合物被分离成液体馏分和气体馏分和气体馏分被馈送到第一和第二个反应单元的入口。 该方法的特征在于,没有获得在反应单元中的气体成分分离成含氢气体和进入的轻质烃的宽馏分,含有烯烃和DASS含氢气体送入至含氧化合物合成单元, DASS DER结式的含氧化合物进料至所述第一和第二个反应单元的入口,并在管芯DASS轻烃宽馏分,含烯烃,被供给到所述第一反应部的入口。 使用本发明的允许增加生产芳族烃的浓缩物的效率和关于提高选择性烷基苯系物,并且具体地二甲苯。
摘要:
The invention relates to hydrocarbon feedstock processing technology, in particular, to catalysts and technology for aromatization of C 3 -C 4 hydrocarbon gases, light low-octane hydrocarbon fractions and oxygen-containing compounds (C 1 -C 3 aliphatic alcohols), as well as mixtures thereof resulting in producing an aromatic hydrocarbon concentrate (AHCC). The catalyst comprises a mechanical mixture of 2 zeolites, one of which is characterized by the silica/alumina ratio SiO 2 /Al 2 O 3 =20, pre-treated with an aqueous alkali solution and modified with oxides of rare-earth elements used in the amount from 0.5 to 2.0 wt% based on the weight of the first zeolite. The second zeolite is characterized by the silica/alumina ratio SiO 2 /Al 2 O 3 =82, comprises sodium oxide residual amounts of 0.04 wt% based on the weight of the second zeolite, and is modified with magnesium oxide in the amount from 0.5 to 5.0 wt% based on the weight of the second zeolite. Furthermore, the zeolites are used in the weight ratio from 1.7:1 to 2.8:1, wherein a binder comprises at least silicon oxide and is used in the amount from 20 to 25 wt% based on the weight of the catalyst. The process is carried out using the proposed catalyst in an isothermal reactor without recirculation of gases from a separation stage, by contacting a fixed catalyst bed with a gaseous feedstock, which was evaporated and heated in a preheater. The technical result consists in achieving a higher aromatic hydrocarbon yield while ensuring almost complete conversion of the HC feedstock and oxygenates, an increased selectivity with respect to forming xylols as part of an AHCC, while simultaneously simplifying the technological setup of the process by virtue of using a reduced (inter alia, atmospheric) pressure.
摘要:
The invention relates to the field of petrochemistry and petroleum refining, and more-specifically to methods and devices for producing a concentrate of aromatic hydrocarbons from liquid hydrocarbon fractions, which involve feeding initial components into a mixer, heating said components, feeding same to a reactor in which the heated components are converted into aromatic hydrocarbons in the presence of a catalyst, separating same into liquid and gas phases, feeding the gas phase into the mixer, and feeding the liquid phase into a rectification column, from which an aromatic hydrocarbon concentrate is collected, and can be used in petroleum refining and in petrochemistry for producing a concentrate of aromatic hydrocarbons. According to the invention, methanol is additionally fed into the mixer. Hydrocarbon components which remain in the rectification column following collection are at least partially fed into the mixer. The liquid phase is additionally separated into liquid hydrocarbons and water, the liquid hydrocarbons are fed into the rectification column, and the water is removed. The composition of the liquid aromatic hydrocarbons, which are fed into the rectification column, is measured. In accordance with the results of the measurements, the flow rate of the initial components fed into the mixer is adjusted, and/or the temperature of the rectification column is adjusted. A proposed installation carries out the said method. The achieved technical result consists in increasing the efficiency of producing concentrates of aromatic hydrocarbons, and in increasing the content of alkylbenzenes, particularly xylenes.
摘要:
The invention relates to the field of gas chemistry and, more specifically, to methods and devices for producing aromatic hydrocarbons from natural gas, which involve producing synthesis gas, converting same into methanol, producing, from the methanol, in the presence of a catalyst, a concentrate of aromatic hydrocarbons and water, separating the water, air stripping hydrocarbon residues from the water, and separating-out the resultant concentrate of aromatic hydrocarbons and hydrogen-containing gas, the latter being at least partially used in the production of synthesis gas to adjust the ratio therein of H 2 :CO 1.8-2.3:1, and can be used for producing aromatic hydrocarbons. According to the invention, the production of aromatic hydrocarbons from methanol in the presence of a catalyst is carried out in two consecutively-connected reactors for synthesizing aromatic hydrocarbons: in a first, low-temperature isothermal reactor for synthesizing aromatic and aliphatic hydrocarbons, and in a second, high-temperature adiabatic reactor for synthesizing aromatic and aliphatic hydrocarbons from aliphatic hydrocarbons formed in the first reactor, and the subsequent stabilization thereof in an aromatic hydrocarbon concentrate stabilization unit. At least a portion of the hydrogen-containing gas is fed to a synthesis gas production unit and is used for producing synthesis gas using autothermal reforming technology. The installation carries out the method. The achieved technical result consists in increasing the efficiency of producing concentrates of aromatic hydrocarbons.