Abstract:
The present invention is to provide compositions comprising organic compounds useful as a chemical industrial material or a fuel composition with the use of an alcohol such as ethanol as a material. It is a method for producing compositions using alcohol as a starting material and comprising: allowing alcohol to contact with an alcohol conversion catalyst such as hydroxyapatite (first step) and conducting a hydrogenation reaction respectively for all reaction products consisting of a liquid phase including alcohols, water and hydrocarbons of 4-12 carbons and a gas phase which is light gas containing paraffins, alcohols and olefins; all liquid phase reaction products consisting of all reaction products from which light gas has been removed; and a liquid phase dehydration reaction products consisting of all reaction products from which light gas, unreacted alcohol and product water have been removed (second step).
Abstract:
The present invention provides a process for producing liquid hydrocarbon products from a solid biomass feedstock, said process comprising the steps of: a) providing in a first hydropyrolys is reactor vessel a first hydropyrolysis catalyst composition, said composition comprising one or more active metals selected from cobalt, molybdenum, nickel, tungsten, ruthenium, platinum, palladium, iridium and iron on an oxide support, wherein the active metals are present in a partially sulfided form to the extent that the first hydropyrolysis catalyst composition contains sulfur in an amount of from 10 to 90% of a full stoichiometric amount; b) contacting the solid biomass feedstock with said first hydropyrolysis catalyst composition and molecular hydrogen in said first hydropyrolysis reactor vessel at a temperature in the range of from 350 to 600°C and a pressure in the range of from 0.50 to 7.50MPa, to produce a product stream comprising partially deoxygenated hydropyrolysis product, H2O, H2, CO2, CO, C1 - C3 gases, char and catalyst fines; c) removing said char and catalyst fines from said product stream; d) hydroconverting said partially deoxygenated hydropyrolysis product in a hydroconversion reactor 25 vessel in the presence of one or more hydroconversion catalyst and of the H2O, CO2, CO, H2, and C1 - C3 gas generated in step a), to produce a vapour phase product comprising substantially fully deoxygenated hydrocarbon product, H2O, CO, CO2, and C1 – C3 gases.
Abstract:
The invention relates to a method for revamping a conventional refinery of mineral oils into a biorefinery, characterized by a production scheme which allows the treatment of raw materials of a biological origin (vegetable oils, animal fats, exhausted cooking oils) for the production of biofuels, prevalently high-quality biodiesel. This method allows the re-use of existing plants, allowing, in particular, the revamping of a refinery containing a system comprising two hydrodesulfurization units, U1 and U2, into a biorefinery containing a production unit of hydrocarbon fractions from mixtures of a biological origin containing fatty acid esters by means of their hydrodeoxygenation and isomerization, wherein each of the hydrodesulfurization units U1 and U2 comprises: - a hydrodesulfurization reactor, (A1) for the unit U1 and (A2) for the unit U2, wherein said reactor contains a hydrodesulfurization catalyst; - one or more heat exchangers between the feedstock and effluent of the reactor; - a heating system of the feedstock upstream of the reactor; - an acid gas treatment unit downstream of the reactor, containing an absorbent (B) for H 2 S, said unit being called T1 in the unit U1 and T2 in the unit U2,
and wherein said method comprises: - installing a line L between the units U1 and U2 which connects them in series; - installing a recycling line of the product for the unit U1 and possibly for the unit U2, - substituting the hydrodesulfurization catalyst in the reactor A1 with a hydrodeoxygenation catalyst; - substituting the hydrodesulfurization catalyst in the reactor A2 with an isomerization catalyst; - installing a by-pass line X of the acid gas treatment unit T2 of the unit U2; - substituting the absorbent (B) in the acid gas treatment unit T1 with a specific absorbent for CO 2 and H 2 S. The operative configuration obtained with the method, object of the present invention, also leads to a substantial reduction in emissions of pollutants into the atmosphere, with respect to the original operative mode. The invention also relates to the transformation unit of mixtures of a biological origin obtained with said conversion method and particularly hydrodeoxygenation and isomerization processes.
Abstract:
The invention relates to a method for revamping a conventional refinery of mineral oils into a biorefinery, characterized by a production scheme which allows the treatment of raw materials of a biological origin (vegetable oils, animal fats, exhausted cooking oils) for the production of biofuels, prevalently high-quality biodiesel. This method allows the re-use of existing plants, allowing, in particular, the revamping of a refinery containing a system comprising two hydrodesulfurization units, U1 and U2, into a biorefinery containing a production unit of hydrocarbon fractions from mixtures of a biological origin containing fatty acid esters by means of their hydrodeoxygenation and isomerization, wherein each of the hydrodesulfurization units U1 and U2 comprises: - a hydrodesulfurization reactor, (A1) for the unit U1 and (A2) for the unit U2, wherein said reactor contains a hydrodesulfurization catalyst; - one or more heat exchangers between the feedstock and effluent of the reactor; - a heating system of the feedstock upstream of the reactor; - an acid gas treatment unit downstream of the reactor, containing an absorbent (B) for H 2 S, said unit being called T1 in the unit U1 and T2 in the unit U2, and wherein said method comprises: - installing a line L between the units U1 and U2 which connects them in series; - installing a recycling line of the product for the unit U1 and possibly for the unit U2, - substituting the hydrodesulfurization catalyst in the reactor A1 with a hydrodeoxygenation catalyst; - substituting the hydrodesulfurization catalyst in the reactor A2 with an isomerization catalyst; - installing a by-pass line X of the acid gas treatment unit T2 of the unit U2; - substituting the absorbent (B) in the acid gas treatment unit T1 with a specific absorbent for CO 2 and H 2 S. The operative configuration obtained with the method, object of the present invention, also leads to a substantial reduction in emissions of pollutants into the atmosphere, with respect to the original operative mode. The invention also relates to the transformation unit of mixtures of a biological origin obtained with said conversion method and particularly hydrodeoxygenation and isomerization processes.
Abstract:
The invention relates to a process for continuously converting carbonaceous material contained in one or more feedstocks into a liquid hydrocarbon product, said feedstocks including the carbonaceous material being in a feed mixture including one or more fluids, said fluids including water, the process comprising: converting at least part of the carbonaceous material by pressurising the feed mixture to an operational pressure in the range 150-400 bar, heating the feed mixture to an operational temperature in the range 300-450 °C, and maintaining said pressurized and heated feed mixture in the desired pressure and temperature ranges in a reaction zone for a predefined time; cooling the feed mixture to a temperature in the range 25-200 °C and expanding the feed mixture to a pressure in the range of 1-70 bar, thereby causing the carbonaceous material to be converted to a liquid hydrocarbon product; and separating from the converted feed mixture a fraction comprising liquid hydrocarbon product;where prior to the pressurisation and heating of the feed mixture the system has been brought to an operational state by filling the system with a fluid while the system being at a temperature and a pressure below the operational temperature and pressure, and subsequently heating and pressurizing the fluid to the operational conditions at a predetermined heating and pressurisation rate, where the pressure is constantly kept at a level above the saturation pressure for the fluid at a given temparature, and where upon reaching the operational temperature and pressure the fluid inflow to the pressurisation is terminated and the feed mixture inflow to the pressurisation is initiated.
Abstract:
A hydrodeoxygenation catalyst comprises a metal catalyst, an acid promoter, and a support. The metal catalyst is selected from platinum, palladium, ruthenium, rhenium rhodium, osmium, iridium, nickel, cobalt, molybdenum, copper, tin, or mixtures thereof. The support is a promoted-zirconium material including texture promoters and acid promoters. The hydrodeoxygenation catalyst may be used for hydrodeoxygenation (HDO) of sugar or sugar alcohol in an aqueous solution. In one embodiment the HDO catalyst may be used for HDO of fatty acids such as fatty acid methyl esters (FAME), triglycerols (in plant oil and animal fat), pyrolysis oil, or lignin. The hydrodeoxygenation catalyst for fatty acid process does not require the use of an acid promoter, it is optional
Abstract:
This specification discloses an operational continuous process to convert lignin as found in ligno-cellulosic biomass before or after converting at least some of the carbohydrates. The continuous process has been demonstrated to create a slurry comprised of lignin, raise the slurry comprised of lignin to ultra-high pressure, deoxygenate the lignin in a lignin conversion reactor over a catalyst which is not a fixed bed without producing char. The conversion products of the carbohydrates or lignin can be further processed into polyester intermediates for use in polyester preforms and bottles.
Abstract:
This specification discloses an operational continuous process to convert lignin as found in ligno-cellulosic biomass before or after converting at least some of the carbohydrates. The continuous process has been demonstrated to create a slurry comprised of lignin, raise the slurry comprised of lignin to ultra-high pressure, deoxygenate the lignin in a lignin conversion reactor over a catalyst which is not a fixed bed without producing char. The conversion products of the carbohydrates or lignin can be further processed into polyester intermediates for use in polyester preforms and bottles.
Abstract:
The present invention relates to a method for manufacturing biodiesel by isomerizing a part of the resultant of hydrodeoxygenation and recycling the isomerized product, and then hydrodeoxygenating a fresh feed in a diluted state again when oxygen is removed in the form of water, CO, and CO 2 by adding hydrogen to a feed including triglyceride (TG).