Abstract:
A titanium alloy member with high strength and high proof stress not only in the surface but also inside, using a general and inexpensive α-β type titanium alloy, and a production method therefor, are provided. The production method includes preparing a raw material made of titanium alloy, nitriding the raw material to form a nitrogen-containing raw material by generating a nitrogen compound layer and/or a nitrogen solid solution layer in a surface layer of the raw material, mixing the raw material and the nitrogen-containing raw material to yield a nitrogen-containing mixed material, sintering the nitrogen-containing mixed material to obtain a sintered titanium alloy member by bonding the material together and uniformly diffusing nitrogen in solid solution from the nitrogen-containing raw material to the entire interior portion of the sintered titanium alloy member, and hot plastic forming the sintered titanium alloy member.
Abstract:
Provided is a magnetic plate capable of contributing to higher torque, higher output, and downsizing and activating ineffective magnetic field, and preventing higher harmonic waves. The magnet plate is used for a rotor core of a motor, the magnetic plate having a body portion 7 formed into an annular shape, the rotor core in which a plurality of the magnetic plates are stacked one on another and permanent magnets whose cross-section is approximately rectangular and is elongated in a circumferential direction of the body portion 7 are held by a plurality of the magnet slots 13 being formed so as to be elongated in the circumferential direction inside an outer peripheral edge 9 and being arranged at the predetermined interval in the circumferential direction. The magnet plate includes a magnetic pole portion 21 being set between the outer peripheral edge 9 of the body portion 7 and the magnet slot 13 and having a radial width being set so as to be smaller than a radial sectional width of the permanent magnet 15, and a higher hardness portion 23 being set to be formed into a hook shape along an end corner of the magnet slot 13 and have a smaller width than the radial sectional width of the permanent magnet 15.
Abstract:
A high-strength magnesium alloy member is suitable for products in which at least one of bending stress and twisting stress primarily acts. The member has required elongation and 0.2 % proof stress, whereby strength and formability are superior, and has higher strength and large compressive residual stress in the vicinity of the surface of a wire rod. In the magnesium alloy member formed as a wire rod in which at least one of bending stress and twisting stress primarily acts, the wire rod includes a surface portion having the highest hardness of 170 HV or more in the vicinity of the surface and an inner portion having a 0.2 % proof stress of 550 MPa or more and an elongation of 5 % or more, and the wire rod has the highest compressive residue stress in the vicinity of the surface of 50 MPa or more.
Abstract:
A high-strength magnesium alloy member is suitable for products in which at least one of bending stress and twisting stress primarily acts. The member has required elongation and 0.2 % proof stress, whereby strength and formability are superior, and has higher strength and large compressive residual stress in the vicinity of the surface of a wire rod. In the magnesium alloy member formed as a wire rod in which at least one of bending stress and twisting stress primarily acts, the wire rod includes a surface portion having the highest hardness of 170 HV or more in the vicinity of the surface and an inner portion having a 0.2 % proof stress of 550 MPa or more and an elongation of 5 % or more, and the wire rod has the highest compressive residue stress in the vicinity of the surface of 50 MPa or more.
Abstract:
A high strength titanium alloy member with superior fatigue resistance, and a production method therefor, are provided. The titanium alloy member is made of an inexpensive α-β type titanium alloy having broad utility and has high proof stress and high strength from the surface to the entire interior portion, while having great compressive residual stress provided from the surface to deep in the interior. The production method includes preparing a raw material made of titanium alloy, nitriding the raw material to form a nitrogen-containing raw material by generating a nitrogen compound layer and/or a nitrogen solid solution layer in a surface layer of the raw material, mixing the raw material and the nitrogen-containing raw material to yield a nitrogen-containing mixed material, sintering the nitrogen-containing mixed material to obtain a sintered titanium alloy member by bonding the material together and uniformly diffusing nitrogen in solid solution from the nitrogen-containing raw material to the entire interior portion of the sintered titanium alloy member, hot plastic forming and/or heat treating the sintered titanium alloy member to obtain a processed member, and surface treating the processed member to provide compressive residual stress.
Abstract:
A titanium alloy member with high strength and high proof stress not only in the surface but also inside, using a general and inexpensive ±-² type titanium alloy, and a production method therefor, are provided. The production method includes preparing a raw material made of titanium alloy, nitriding the raw material to form a nitrogen-containing raw material by generating a nitrogen compound layer and/or a nitrogen solid solution layer in a surface layer of the raw material, mixing the raw material and the nitrogen-containing raw material to yield a nitrogen-containing mixed material, sintering the nitrogen-containing mixed material to obtain a sintered titanium alloy member by bonding the material together and uniformly diffusing nitrogen in solid solution from the nitrogen-containing raw material to the entire interior portion of the sintered titanium alloy member, and hot plastic forming the sintered titanium alloy member.
Abstract:
A high-strength magnesium alloy wire rod suitable for products in which at least one of bending stress and twisting stress primarily acts is provided. The wire rod has required elongation and 0.2 % proof stress, whereby strength and formability are superior, and has higher strength in the vicinity of the surface. In the wire rod, the surface portion has the highest hardness in a cross section of the wire rod, the highest hardness is 170 HV or more, and the inner portion has a 0.2 % proof stress of 550 MPa or more and an elongation of 5% or more.
Abstract:
A titanium alloy material having high overall strength is produced by applying nitrogen to ±-² type titanium alloys that are widely used. A production method for a titanium alloy member includes preparing a titanium alloy material for sintering as a raw material of a sintered body; nitriding the titanium alloy material for sintering, thereby forming a nitrogen compound layer and/or a nitrogen solid solution layer in a surface layer of the titanium alloy material for sintering and yielding a nitrogen-containing titanium alloy material for sintering; mixing the titanium alloy material for sintering and the nitrogen-containing titanium alloy material for sintering, thereby yielding a titanium alloy material for sintering mixed with nitrogen-containing titanium alloy material; sintering the titanium alloy material for sintering mixed with nitrogen-containing titanium alloy material, thereby bonding the material each other and dispersing nitrogen contained in the nitrogen-containing titanium alloy material for sintering in a condition in which nitrogen is uniformly dispersed into an entire inner portion of the sintered body by solid solution.
Abstract:
A titanium alloy material having high overall strength is produced by applying nitrogen to α-β type titanium alloys that are widely used. A production method for a titanium alloy member includes preparing a titanium alloy material for sintering as a raw material of a sintered body; nitriding the titanium alloy material for sintering, thereby forming a nitrogen compound layer and/or a nitrogen solid solution layer in a surface layer of the titanium alloy material for sintering and yielding a nitrogen-containing titanium alloy material for sintering; mixing the titanium alloy material for sintering and the nitrogen-containing titanium alloy material for sintering, thereby yielding a titanium alloy material for sintering mixed with nitrogen-containing titanium alloy material; sintering the titanium alloy material for sintering mixed with nitrogen-containing titanium alloy material, thereby bonding the material each other and dispersing nitrogen contained in the nitrogen-containing titanium alloy material for sintering in a condition in which nitrogen is uniformly dispersed into an entire inner portion of the sintered body by solid solution.