摘要:
An optical collimator system for a high power fiber laser system that collimates the individual light beams amplified by a plurality of fibers in the laser system. The fibers are optically coupled to undoped fibers and the fibers are optically coupled to one surface of an optical substrate. A registration guide precisely aligns the fibers to the substrate. Lenses are optically coupled to an opposing surface of the substrate in precise alignment with the optical fibers. The light beam from each fiber propagates through the substrate and diverges, and the associated lens collimates the beam to have a desired beam width and direction. Each lens includes an anti-reflective coating so that the optical beam from the fiber is not significantly reflected back through the substrate.
摘要:
An optoelectronic communication system for use with an optical signal that passes through a turbulent environment is disclosed. The communication system comprises an optical transmitter for transmitting an optical signal, and an optoelectronic receiver. The optoelectronic receiver comprises a reflector for collecting the optical signal and for propagating a plurality of portions of it. A plurality of first optoelectronic detectors responds to a selected portion of the optical signal and each develops a plurality of first electrical signals. A probe laser generates an optical probe beam. Means are responsive to the plurality of first electrical signals and changes a characteristic of the optical probe beam corresponding to the information. A second optoelectronic detector responds to the changed characteristic and develops an output electrical signal representative of the information contained in the received optical signal. Alternatively, the optical signal is amplified and sent directly through a ground-based optical fiber network such that the output signal is optical. In another aspect, a time compensation network serves to synchronize the probe and the signal beams.
摘要:
An optical amplifier (20, 100) includes an elongated slab (22, 102) of solid state lasing material, such as a rare earth doped yttrium-aluminum-garnet (YAG) slab. In order to provide a relatively increased absorption length and thus a higher overall efficiency, the optical amplifier (20, 100) in accordance with the present invention incorporates end pumping in which the pumped light is coaligned with the amplified light resulting in relatively longer absorption lengths and higher overall efficiencies. The coaligned pumped sources are directed to lateral faces of the slab (22, 102) which include footprints (41, 43, 108) or windows. In order to cause internal reflection of the pump beam along the lasing axis, the end faces (28, 30, 110) are formed at about a 45° angle relative to the longitudinal axis which causes the pumped light to be reflected within the slab co-axially with amplified light. In order to confine the absorption of the pumped light to the center portion of the slab (22, 102), the slab (22, 102) may be formed from a composite material with the opposing end portions of the slab formed from an undoped host material while the center portion of the slab along the longitudinal axis is formed from a doped host material. Such a configuration provides relatively low residual thermal lensing with virtually no birefringence. In one embodiment, the pumping light from the diode arrays is coupled to the slab (22, 102) by way of lenses (54) or lens ducts (FIG. 1). In an alternate embodiment, the pumping light is coupled to the slab (22. 102) by way of optical fibers (104, 106). In yet another embodiment (FIG. 8), the pumping light and laser beams are interchanged forming a low-loss straight through slab with end pumped architecture.
摘要:
An optical collimator system for a high power fiber laser system that collimates the individual light beams amplified by a plurality of fibers in the laser system. The fibers are optically coupled to undoped fibers and the fibers are optically coupled to one surface of an optical substrate. A registration guide precisely aligns the fibers to the substrate. Lenses are optically coupled to an opposing surface of the substrate in precise alignment with the optical fibers. The light beam from each fiber propagates through the substrate and diverges, and the associated lens collimates the beam to have a desired beam width and direction. Each lens includes an anti-reflective coating so that the optical beam from the fiber is not significantly reflected back through the substrate.
摘要:
An electrically controlled variable reflectance mirror (34) including a Pockels cell (28) which enables its retardation or birefringence to be controlled in order to vary the light outcoupled from a laser cavity. Since the retardation is a function of the voltage applied to be Pockels cell, the voltage can be used to control the fraction of the output beam that is outcoupled from the laser cavity. In one embodiment of the invention, the Pockels cell (28) is formed with a constant reflectivity profile to form an electrically controlled uniform reflectivity electro-optic mirror. In an alternate embodiment of the invention, the Pockels cell is configured with spatially varying retardation to form an electrically controlled graded reflectivity electro-optic mirror. Both embodiments of the invention enable a lasing system, such as a solid state lasing system, to be operated over a relatively wide range of operating parameters utilizing a single set of optics. In another alternate embodiment of the invention, a two-dimensional electrically controlled graduated reflective mirror system is disclosed. Finally, an electrically controlled spatial filter is disclosed for use with stable resonator systems.
摘要:
An optical interconnect for use with a probe beam and optical signals is disclosed. The interconnect comprises an optical waveguide for propagating the probe beam, an optical transcription material that changes a characteristic of the probe beam at locations where the optical signals interact with the probe beam. A signal processor develops an output signal from the changed characteristic representative of the information contained in the optical signals. The optical signals may be amplitude or phase modulated or polarized. The interconnect can be configured to add and subtract the optical signals.
摘要:
A time compensation architecture for use with a plurality of optical signals is disclosed. It comprises means for receiving the plurality of optical signals, optical means for selectively delaying the propagation of each of the plurality of optical signals, and means for outputting the time delayed optical signals. The delay may be achieved by changing the indices of refraction or the material lengths of the elements and can either be an active or a passive compensation technique.
摘要:
An optical amplifier (20, 100) includes an elongated slab (22, 102) of solid state lasing material, such as a rare earth doped yttrium-aluminum-garnet (YAG) slab. In order to provide a relatively increased absorption length and thus a higher overall efficiency, the optical amplifier (20, 100) in accordance with the present invention incorporates end pumping in which the pumped light is coaligned with the amplified light resulting in relatively longer absorption lengths and higher overall efficiencies. The coaligned pumped sources are directed to lateral faces of the slab (22, 102) which include footprints (41, 43, 108) or windows. In order to cause internal reflection of the pump beam along the lasing axis, the end faces (28, 30, 110) are formed at about a 45° angle relative to the longitudinal axis which causes the pumped light to be reflected within the slab co-axially with amplified light. In order to confine the absorption of the pumped light to the center portion of the slab (22, 102), the slab (22, 102) may be formed from a composite material with the opposing end portions of the slab formed from an undoped host material while the center portion of the slab along the longitudinal axis is formed from a doped host material. Such a configuration provides relatively low residual thermal lensing with virtually no birefringence. In one embodiment, the pumping light from the diode arrays is coupled to the slab (22, 102) by way of lenses (54) or lens ducts (FIG. 1). In an alternate embodiment, the pumping light is coupled to the slab (22. 102) by way of optical fibers (104, 106). In yet another embodiment (FIG. 8), the pumping light and laser beams are interchanged forming a low-loss straight through slab with end pumped architecture.