摘要:
An electrochromic device (10) includes a first substrate (12) spaced from a second substrate (14). A first conductive member (16) is formed over at least a portion of the first substrate (12). A first electrochromic electrode (18) comprising a tungsten oxide coating is formed over at least a portion of the first conductive member (16). A second conductive member (20) is formed over at least a portion of the second substrate (14). A second electrochromic electrode (22) is formed over at least a portion of the second conductive member (20). An ionic liquid (24) is positioned between the first electrode (18) and the second electrode (22). In one aspect of the invention, the ionic liquid (24) can include nanoparticies of metals or metal oxides. In a further aspect of the invention, the second conductive member (20) and second electrode (22) can be formed by a single material.
摘要:
An aircraft window assembly (10) includes a first panel (12) having a first surface (14) and a second surface (16). In a first state in which there is no pressure difference between the first surface (14) and the second surface (16), the first panel (12) has a cross-sectional shape selected from planar, outwardly convex, or inwardly convex. In a second state in which there is a pressure difference between first surface (14) and the second surface (16), the first panel (12) has an outwardly convex cross-sectional shape.
摘要:
An aircraft window assembly (10) includes a first panel (12) having a first surface (14) and a second surface (16). In a first state in which there is no pressure difference between the first surface (14) and the second surface (16), the first panel (12) has a cross-sectional shape selected from planar, outwardly convex, or inwardly convex. In a second state in which there is a pressure difference between first surface (14) and the second surface (16), the first panel (12) has an outwardly convex cross-sectional shape. The assembly (10) comprises a wire grid (102) embedded in the first panel (12).
摘要:
A low infrared absorbing lithium glass includes FeO in the range of 0.0005-0.015 wt.%, more preferably 0.001-0.010 wt.%, and a redox ratio in the range of 0.005-0.15, more preferably in the range of 0.005-0.10. The glass can be chemically tempered and used to provide a ballistic viewing cover for night vision goggles or scope. A method is provided to change a glass making process from making a high infrared absorbing lithium glass having FeO in the range of 0.02 to 0.04 wt.% and a redox ratio in the range of 0.2 to 0.4 to the low infrared absorbing lithium glass by adding additional oxidizers to the batch materials. A second method is provided to change a glass making process from making a low infrared absorbing lithium glass to the high infrared absorbing lithium glass by adding additional reducers to the batch material. In one embodiment of the invention the oxidizer is CeO 2 . An embodiment of the invention covers a glass made according to the method.
摘要:
A low infrared absorbing lithium glass Includes FeO in the range of 0.0005-0,015 wt%, more preferably 0.001-0.010 wt%, and a redox ratio in the range of 0.005-0.15, more preferably in the range of 0.005-010. The glass can be chemically tempered and used to provide a ballistic viewing cover for night vision goggles or scope. A method is provided to change a glass making process from making a high infrared absorbing lithium glass having FeO in the range of 0.02 to 0,04 wt% and a redox ratio in the range of 0.2 to 0.4 to the low infrared absorbing lithium glass by adding additional oxidizers to the batch materials. A second method is provided to change a glass making process from making a low infrared absorbing lithium glass to the high infrared absorbing lithium glass by adding additional reducers to the batch material In one embodiment of the invention the oxidizer is CeO 2 . An embodiment of the invention covers a glass made according to the method.
摘要:
An aircraft transparency includes a first stretched acrylic ply and a second stretched acrylic ply. A coating stack having solar control properties is applied over at least a portion of one or more of the major surfaces. The coating stack includes a first primer layer comprising an epoxy amino siloxane-containing material. A solar coating having at least three metallic silver layers is formed over at least a portion of the first primer layer. A protective coating including silica and alumina is formed over at least a portion of the solar control coating. A topcoat including a polysiloxane material is formed over at least a portion of the protective coating. An overcoat is formed over at least a portion of the topcoat and includes a diamond-like carbon type coating.