Abstract:
A chamber blade system (28) maximizes ink flow at an anilox doctor blade (32) by including a heating element (46) adjacent the anilox doctor blade (32) to heat ink adjacent the anilox doctor blade (32). The heating element (46) may be a heat strip next to an anilox doctor blade (32) that heats the ink adjacent the anilox doctor blade (32) and temporarily reduces the ink viscosity to improve the flow of ink in the vicinity of the aniox doctor blade (32). Doctoring blades (32) with a ceramic tip coating (48) may be configured to allow a small amount of controlled ink flow through that can wet the lands of the anilox roll (12) thereby reducing the hydrodynamic back pressures and friction when trying to force the ink into anilox cells.
Abstract:
A variable lithographic cleaning apparatus, system and method works on the principle that dust and ink residue may be transferred from a lower surface energy reimageable conformable blanket surface to a higher surface energy surface low durometer cleaning member, such as the tacky roller (52, 62), and then to an even higher surface energy cleaning member, such as the hard roller (54), which is hard and robust to scratching. The hard roller (54) can then been scrubbed clean by an ink flushing device (56) having a third cleaning member, such as a melamine sponge (58), wetted with a cleaning solution (60) with the hard roller dried upon each rotation.
Abstract:
Disclosed herein are methods for an ink-based digital printing system, comprising providing an imaging member a reimageable surface layer disposed on a structural mounting layer, the reimageable surface layer comprising a fluorosilicone elastomer and an infrared-absorbing filler comprising carbon black, and a plurality of surface defects on the reimageable surface layer, wherein the surface defects comprises carbon black exposed through the fluorosilicone elastomer of the reimageable surface layer. The method also comprises applying a coating of rejuvenating oil comprising an amino-functional organopolysiloxane to the reimageable surface layer, whereby at least a portion of the plurality of surface defects are coated by the amino-functional organopolysiloxane, thereby rejuvenating the imaging member.
Abstract:
High resolution printing systems that utilize high power laser diode bars and digital mirror devices (DMD) require side-by-side stacking of illumination modules to stitching of the image from each module to form a longer total image width. An inline illumination optical system having a refractive prism and Total Internal Reflection (TIR) prism pair with an air gap along with a light guide transporting light beams at a compound angle to the prism pair eliminates the need for any axial rotation of the laser and light guide, and enables side-by-side module stacking. The illumination optical system includes an illumination module having a light source, the light guide, a DMD array and a Refractive TIR (RTIR) prism. The system also includes a DMD housing containing the DMD array and having a width within which the illumination module is confined to allow side-by-side stacking.
Abstract:
An ink composition useful for digital offset printing applications includes a colorant and a high viscosity thickening agent. A process for variable data lithographic printing includes applying a dampening fluid to an imaging member surface; forming a latent image by evaporating the dampening fluid from selective locations on the imaging member surface to form hydrophobic non-image areas and hydrophilic image areas; developing the latent image by applying an ink composition comprising an ink component to the hydrophilic image areas, the ink composition comprising a high viscosity thickening agent to raise the viscosity of the composition from about 1.05 to about 2 times higher while maintaining excellent transfer to a substrate at low temperatures.
Abstract:
Disclosed herein are methods for an ink-based digital printing system, comprising providing an imaging member a reimageable surface layer disposed on a structural mounting layer, the reimageable surface layer comprising a fluorosilicone elastomer and an infrared-absorbing filler comprising carbon black, and a plurality of surface defects on the reimageable surface layer, wherein the surface defects comprises carbon black exposed through the fluorosilicone elastomer of the reimageable surface layer. The method also comprises applying a coating of rejuvenating oil comprising an amino-functional organopolysiloxane to the reimageable surface layer, whereby at least a portion of the plurality of surface defects are coated by the amino-functional organopolysiloxane, thereby rejuvenating the imaging member.