Abstract:
High resolution printing systems that utilize high power laser diode bars and digital mirror devices (DMD) require side-by-side stacking of illumination modules to stitching of the image from each module to form a longer total image width. An inline illumination optical system having a refractive prism and Total Internal Reflection (TIR) prism pair with an air gap along with a light guide transporting light beams at a compound angle to the prism pair eliminates the need for any axial rotation of the laser and light guide, and enables side-by-side module stacking. The illumination optical system includes an illumination module having a light source, the light guide, a DMD array and a Refractive TIR (RTIR) prism. The system also includes a DMD housing containing the DMD array and having a width within which the illumination module is confined to allow side-by-side stacking.
Abstract:
The present invention relates to an optical element for use in a camera system for the inspection of passageways, a camera system for the inspection of passageways and a method of illuminating a passageway during inspection with a camera. An optical element for use in a camera system for the inspection of passageways comprises a first optical portion arranged to transmit light into a camera, a second optical portion arranged to transmit light emitted from a light source, the second optical portion located adjacent the first optical portion, and barrier means arranged to prevent light being transmitted from the second optical portion into the first optical portion.
Abstract:
In einer Spiegelanordnung zur Führung eines Laserstrahls in einem Lasersystem mit mindestens einem ersten Endspiegel (1) und einem zweiten Endspiegel (2) definieren diese Endspiegel (1,2) einen Resonator mit optischen Resonatorachse (OA), wobei der Laserstrahl als Eingangslaserstrahl (ES) in den Resonator geführt und nach mehrfacher Reflexion an jeweils dem ersten und dem zweiten Endspiegel (1,2) als Ausgangslaserstrahl (AS) wieder aus dem Resonator geführt wird. Dabei legt die Abfolge der Reflexionen an dem ersten und dem zweiten Endspiegel (1,2) eine gegenüber der Resonatorachse (OA) als Drehachse definierte Drehrichtung zwischen dem ersten und zweiten Endspiegel im Resonator fest, wodurch ein erster Strahlgang definiert ist und der Laserstrahl mit einer gegenüber der Resonatorachse (OA) als Drehachse definierten Drehrichtung zwischen dem ersten und zweiten Endspiegel im Resonator umläuft. Der Resonator ist so ausgebildet, dass die Drehrichtung in einem Umkehrpunkt umgekehrt wird und der Laserstrahl im Resonator zumindest teilweise mit zum ersten Strahlgang gegenläufiger Drehrichtung durchläuft, wodurch ein zweiter Strahlgang definiert ist.
Abstract:
An optical system, comprising a lens (30) as an optical part without a reflecting surface, wherein an incident light axis (1) does not match an outgoing light axis (2), and the optical axis (4) of the lens (30) is not parallel with nor vertical to a flat surface including the incident position (25) of incident light, the outgoing position (55) of outgoing light, and the incident light axis (1) or the outgoing light axis (2).
Abstract:
An interior rearview mirror assembly (10) for vehicles includes a mirror case (12) having a reflective element (14) and a carrier positioned in the mirror case (12). The mirror case (12) is adapted to mount to a vehicle. The reflective element (14) includes a substrate, with a reflective coating on one side of the substrate, and a window therethrough. The carrier has a display element for displaying one or more indicia through the window to define a display area on the reflective element (14). The carrier comprises a plate member, with a first portion and a second portion offset rearwardly from the reflective element and from the first portion. The second portion includes the display element (20). Preferably, the interior rearview mirror assembly further includes at least one light assembly for displaying the indicia through said window so that it is visible to an occupant of the vehicle.
Abstract:
A light-guide device includes a light guiding element (13) with a number of faces, including two parallel faces (26), for guiding light by internal reflection. A transparent optical element (19) has an interface surface for attachment to a coupling surface (14) of the light guiding element, and is configured such that light propagating within the transparent optical element passes through the interface surface and the coupling surface (14) so as to propagate within the light guiding element (13). A non-transparent coating (15) is applied to at least part of one or more faces of the light guiding element (13), defining an edge (17) adjacent to, or overlapping, the coupling surface (14) of the light guiding element (13). A quantity of transparent adhesive is deployed between the coupling surface and the interface surface so as to form an optically transmissive interface. An overspill region 31 of the adhesive extends to, and overlaps, the edge (17).
Abstract:
Lighting devices and methods for providing daylight to the interior of a structure are disclosed. Some embodiments disclosed herein provide a daylighting device including a tube having a sidewall with a reflective interior surface, a light collecting structure, and a light reflector positioned to reflect daylight into the light collector. In some embodiments, the light collector is associated with one or more light-turning and/or light reflecting strictures configured to increase the amount of light captured by the daylighting device. Optical elements may allow for the absorption and/or selective transmission of infrared light away from an interior of the daylighting device.