Abstract:
The present invention generally relates to communication connectors and internal components thereof. In one embodiment, the present invention is a communication jack comprising both front-rotated and back rotated plug interface contacts. In another embodiment, the present invention is a communication jack comprising a two-piece front sled. In yet another embodiment, the present invention is a communication jack that retains its functionality when mated with both eight-position and six-position plugs.
Abstract:
A communication plug is described. The communication plug has a communication cable with a plurality of conductors, a plug housing, and a cable manager partially enclosed within the plug housing. The cable manager has a load bar with a plurality of holes, a first cable management section connected to the load bar via a first hinge, and a second cable management section connected to the load bar via a second hinge. The first and second cable management sections are configured to fold together and partially enclose the cable before the cable manager is inserted into the plug housing.
Abstract:
An electrical connector has a first shell, an opposing second shell and a circuit board between the first shell and the second shell. The circuit board has a first side and an opposing second side and includes a plurality of differential pair conductive traces on each side. A first drain wire termination device is provided on the first side and includes at least one separator between at least one of the differential pair conductive traces on the first side and another of the differential pair conductive traces on the first side. A second drain wire termination device is connected to the second side and includes at least one separator between at least one of the differential pair conductive traces on the second side and another of the differential pair conductive traces on the second side.
Abstract:
A communication port identification system enables an intelligent interconnect patch panel to reliably track connections to network switches. Network switch ports are provided with port ID modules that are inserted into the ports. Intelligent interconnect patch cords each utilize a patch cord microcontroller and out-of-band conductors to enable communication between an intelligent interconnect patch panel and the port ID modules of the switch port. Each port ID module is provided with a unique identification number, and the intelligent interconnect patch panel is thereby able to track all of its connections to the port ID modules in real time, and to update a network management system accordingly.
Abstract:
A pair manager for use in securing a twin-axial cable to a printed circuit board is described. The pair manager comprises a generally block-shaped portion containing a pair of channels. The channels extend from the front face to the rear face of the block-shaped portion. An integral flange and a pair of integral fingers extend perpendicularly from the front face of the block-shaped portion. The flange extends generally from the center of the front face and the fingers extend from opposite edges of the front face. The fingers and flange function as a partial shield cavity around each pair of conductors. This design helps to maintain better impedance matching when connecting twin-axial cables to a printed circuit board.
Abstract:
A communication plug is described. The communication plug has a communication cable with a plurality of conductors, a plug housing, and a cable manager partially enclosed within the plug housing. The cable manager has a load bar with a plurality of holes, a first cable management section connected to the load bar via a first hinge, and a second cable management section connected to the load bar via a second hinge. The first and second cable management sections are configured to fold together and partially enclose the cable before the cable manager is inserted into the plug housing.
Abstract:
The present invention generally relates to communication connectors and internal components thereof. In one embodiment, the present invention is a communication jack comprising back-rotated plug interface contacts having variable cross-sectional widths. In another embodiment, the present invention is a communication jack having back-rotated plug interface contacts where at least two of the plug interface contacts have a differing beam length. In yet another embodiment, the present invention is a communication jack having back-rotated plug interface contacts where at least two of the plug interface contacts have opposing bends in a deflection zone.