摘要:
Aspects of the present disclosure are directed to improving maximum transmit power in multi-carrier reverse-link transmission. In one aspect, a method of carrier management for a multi-carrier reverse link transmission is disclosed. A method can include transmitting a reverse link signal on a plurality of carriers, and the reverse link signal including payload data and overhead data. A method can funnel payload data onto a first carrier of the plurality of carriers, while maintaining transmission of the overhead data on all the carriers of the plurality of carriers. Other aspects, embodiments, and features are also claimed and described.
摘要:
Aspects of the present disclosure relate to wireless communication devices and methods configured to operate with multiple communication protocols in tune-away operations. Some aspects of the present disclosure may improve the legacy tune-away operations at an access terminal. An access terminal establishes a call utilizing a first communication protocol, tunes away from the call to receive cell signaling utilizing a second communication protocol, and tunes back to the call utilizing the first communication protocol. Following the tuning back, during a first predetermined number of subframes and if the size of a reverse link (RL) packet is smaller than a first packet size and larger than a second packet size, the access terminal forces the RL packet to be a low latency (LoLat) packet.
摘要:
The various embodiments include a dual-SIM-dual-active (DSDA) device and methods for implementing robust receive (Rx) processing to resolve radio frequency coexistence interference between two subscriptions operating on the DSDA device. The DSDA device may detect when a subscription (the "aggressor") de-senses the other subscription (the "victim") as a result of the aggressor's transmissions, and in response, implement robust Rx processing to mitigate the effects of de-sense on the victim while causing minimal impact to the aggressor.