Abstract:
A dual-mode laser-based and image-based seeker for projectiles, missiles, and other ordnance that persecute targets by detecting and tracking energy scattered from targets. The disclosed embodiments use a single digital imager having a single focal plane array (FPA) sensor to sense data in both the image-based and laser-based modes of operation. A control mechanism controls pixel scanning at a sub-window of the FPA to tightly control the imager's shuttering to detect, decode and localize in the imager's field-of-view a known pulse repetition frequency (PRF) from a known designator in the presence of ambient light and other confusing target designators, each having a different PRF.
Abstract:
A dual-mode, semi-active, laser-based and passive image-based seeker for projectiles, missiles, and other ordnance that persecute targets by detecting and tracking energy scattered from targets. The disclosed embodiments use a single digital imager having a single focal plane array sensor to sense data in both the image-based and laser-based modes of operation. A shuttering technique allows the relatively low frame-rate of the digital imager to detect, decode and localize in the imager's field-of-view a known pulse repetition frequency (PRF) from a known designator in the presence of ambient light and other confusing target designators, each having a different PRF.
Abstract:
A method to spread laser photon energy over separate pixels to improve the likelihood that the total sensing time of all the pixels together includes the laser pulse. The optical signal is spread over a number of pixels, N, on a converter array by means of various optical components. The N pixels are read out sequentially in time with each sub-interval short enough that the integration of background photons competing with the laser pulse is reduced. Likewise, the pixel read times may be staggered such that laser pulse energy will be detected by at least one pixel during the required pulse interval. The arrangement of the N pixels may be by converter array column, row, two dimensional array sub-window, or any combination of sub-windows depending on the optical path of the laser signal and the capability of the ROIC control.
Abstract:
A dual-mode, semi-active, laser-based and passive image-based seeker for projectiles, missiles, and other ordnance that persecute targets by detecting and tracking energy scattered from targets. The disclosed embodiments use a single digital imager having a single focal plane array sensor to sense data in both the image-based and laser-based modes of operation. A shuttering technique allows the relatively low frame-rate of the digital imager to detect, decode and localize in the imager's field-of-view a known pulse repetition frequency (PRF) from a known designator in the presence of ambient light and other confusing target designators, each having a different PRF.
Abstract:
Apparatus and associated methods relate to controlling an explosive burst event of a ballistic ordnance, based on a ground surface topography mapped by a phased-array LIDAR system. The ground surface topography is mapped using an integrated photonics LIDAR system configured to: generate a beam of coherent light; non-mechanically steer a beam of coherent light over a solid angle about an ordnance axis; and detect the beam reflected from the ground surface. The integrated photonics LIDAR system is further configured to map the ground surface topography, based on a functional relation between an angle of the beam and a time difference between generating the beam and detecting the beam reflected from the ground surface. A timing and/or direction of the explosive burst can be controlled, based on the calculated ground surface topography, so as to advantageously realize a desired effect of the explosion.
Abstract:
A method to spread laser photon energy over separate pixels to improve the likelihood that the total sensing time of all the pixels together includes the laser pulse. The optical signal is spread over a number of pixels, N, on a converter array by means of various optical components. The N pixels are read out sequentially in time with each sub-interval short enough that the integration of background photons competing with the laser pulse is reduced. Likewise, the pixel read times may be staggered such that laser pulse energy will be detected by at least one pixel during the required pulse interval. The arrangement of the N pixels may be by converter array column, row, two dimensional array sub-window, or any combination of sub-windows depending on the optical path of the laser signal and the capability of the ROIC control.
Abstract:
A dual-mode laser-based and image-based seeker for projectiles, missiles, and other ordnance that persecute targets by detecting and tracking energy scattered from targets. The disclosed embodiments use a single digital imager having a single focal plane array (FPA) sensor to sense data in both the image-based and laser-based modes of operation. A control mechanism controls pixel scanning at a sub-window of the FPA to tightly control the imager's shuttering to detect, decode and localize in the imager's field-of-view a known pulse repetition frequency (PRF) from a known designator in the presence of ambient light and other confusing target designators, each having a different PRF.