Abstract:
Stereoscopic eyewear with compound curvature may be employed to view three dimensional content. The manufacture of such eyewear may be achieved by thermoforming a first material and by thermoforming a second material. The first and second materials may be in roll stock form prior to thermoforming, and the first layer may be polarizer material, while the second layer may be retarder material. Each of the first and second materials may be thermoformed by employing optimized thermoforming conditions for each of the two materials. Additionally, the two thermoforming lines may be timed so that the curved shapes of the first material in roll stock form may be substantially synchronized with the curved shapes of the second material in roll stock form, which may allow the curved shapes of each of the first and second materials in roll stock form may be joined together.
Abstract:
Polarization preserving front projection screens and diffusers provide optimum polarization preservation for stereoscopic 3D viewing, as well as improved light control for enhanced brightness, uniformity, and contrast for both 2D and 3D systems. Generally, the disclosed screens direct light from a projector toward viewers within a diffusion locus, while maintaining optimum gain characteristics. More specifically, light incident on a region of the front projection screen from a predetermined projection direction is reflected by an engineered surface to a predetermined diffusion locus after undergoing substantially single reflections. The engineered surface, comprised of generating kernels, is used to optimally diffuse illumination light into a range of viewing angles, within the diffusion locus, with suitable gain profile, while optimally preserving polarization for 3D applications. Such a screen, when combined with matched polarization analyzing eyewear, provides extremely low cross-talk from any observation point.
Abstract:
Disclosed embodiments include stereoscopic systems having at least one compensator operable to reduce the sensitivity of polarization control over incidence angle of image source optics and analyzer optics. In an exemplary embodiment, the disclosed compensator is operable to compensate polarization changes induced by optics at either or both the image source subsystem and the analyzer subsystem, in which the polarization changes would be operable to cause leakage at the analyzer subsystem if uncompensated. As such, the disclosed compensators and compensation techniques are operable to reduce leakage at the analyzer subsystem even if the disclosed compensator may be located at the analyzer subsystem.
Abstract:
The present disclosure describes a manufacturing method for seaming materials. The process may be suitable for manufacturing high performance projection screens using a number of methods including, but not limited to, conventional (convert-before-coating) methods, or convert-after-coating methods. An objective of the present disclosure is to identify a process which may substantially minimize distortion of the local surface normal in the vicinity of the join.
Abstract:
Disclosed embodiments include stereoscopic systems having at least one compensator operable to reduce the sensitivity of polarization control over incidence angle of image source optics and analyzer optics. In an exemplary embodiment, the disclosed compensator is operable to compensate polarization changes induced by optics at either or both the image source subsystem and the analyzer subsystem, in which the polarization changes would be operable to cause leakage at the analyzer subsystem if uncompensated. As such, the disclosed compensators and compensation techniques are operable to reduce leakage at the analyzer subsystem even if the disclosed compensator may be located at the analyzer subsystem.
Abstract:
A front projection screen is provided having a first portion of material and a second portion of material. The first and second portions of material may have an undercut edge profile, and the first and second portions of material may be perforated, such that the perforations allow the first and second portions of material to be at least somewhat acoustically transmissive while substantially maintaining optical efficiency from the front side of the front projection screen. Such optical efficiency has particular utility in stereoscopic projection applications utilizing polarized encoded light.