Abstract:
A device is configured to be operable in a plurality of network environments. A number of different configurations are available to be set on the device, where a first configuration enables operation on a first network, and a second configuration enables operation on a second, disparate, network. A plurality of external ports in conjunction with a multiplexer switch, network switch, internal CPU, external CPU, routing links, etc., can be combined to facilitate multiple configurations for the device. The device is suitable for incorporation into a human machine interface, for application in an industrial processing operation. Receive port information can be incorporated into a data frame to facilitate identification of an external port associated with the reception of the data frame. Applicable networks include linear topology, ring topology, star topology, Ethernet, ROCKWELL NEO, EtherNet/IP, one or more LANs, etc. Configuration can be via a USB device or an interface.
Abstract:
An electronic safety function lock-unlock system includes a human-machine interface (HMI) device. The HMI device includes a touchscreen display for touch input and one or more cameras for capturing gesture input data and operator facial image data. The HMI device is operatively connected to a power switch unit or similar device for selectively interrupting conduction of electrical power to industrial equipment for safety. An operator initiates a lock operation with respect to the equipment using first touchscreen or first gesture input to perform a lock operation to disconnect the industrial equipment from electrical power. An operator initiates an unlock operation or condition (to remove a lock condition) with respect to the equipment using second touchscreen input or second gesture input. The HMI optionally require vocal confirmation from an operator of a requested lock or unlock operation. The HMI can compare a captured image of the operator's face to a database of authorized facial images to determine if the operator is authorized to initiate a lock operation and initiates the lock operation only if the operator is authorized. The power switch unit is set to conduct electrical power to the industrial equipment only if the number of active lock conditions equals zero.
Abstract:
The present disclosure generally relates to a method for performing industrial automation control in an industrial automation system which may include detecting, via a sensor system, positions and/or motions of one or more humans and/or one or more objects in an industrial automation system and distinguishing, via a programmed computer system, between one or more humans and one or more objects based upon the detected positions and/or motions. The method may then include implementing a control and/or notification action based upon the distinction.
Abstract:
A device is configured to be operable in a plurality of network environments. A number of different configurations are available to be set on the device, where a first configuration enables operation on a first network, and a second configuration enables operation on a second, disparate, network. A plurality of external ports in conjunction with a multiplexer switch, network switch, internal CPU, external CPU, routing links, etc., can be combined to facilitate multiple configurations for the device. The device is suitable for incorporation into a human machine interface, for application in an industrial processing operation. Receive port information can be incorporated into a data frame to facilitate identification of an external port associated with the reception of the data frame. Applicable networks include linear topology, ring topology, star topology, Ethernet, ROCKWELL NEO, EtherNet/IP, one or more LANs, etc. Configuration can be via a USB device or an interface.
Abstract:
A human machine interface for an industrial automation control system includes at least one touchless input device that is adapted to be in a first state in which said human machine interface provides a first input to said industrial automation control system or a second state in which said human machine interface provides a second input to said industrial automation control system. The at least one touchless input device includes first and second touchless input sensors each configured to detect hand gestures of an operator's hand to provide input to said human machine interface based upon said gestures. The first and second touchless input sensors can be identical with respect to each other or different. In one example, one or both of the sensors are both time-of-flight sensors and one of the sensors can be an electric field proximity sensor. A method of providing a human machine interface with at least one touchless input device is provided. In one embodiment, the touchless input device provides an emergency stop (Estop) switch device.
Abstract:
The present disclosure generally relates to a method for performing industrial automation control in an industrial automation system which may include detecting, via a sensor system, positions and/or motions of one or more humans and/or one or more objects in an industrial automation system and distinguishing, via a programmed computer system, between one or more humans and one or more objects based upon the detected positions and/or motions. The method may then include implementing a control and/or notification action based upon the distinction.