Abstract:
The invention discloses the use of an additive for acid copper plating bath which is chosen based on criteria of creating a shift in the charge transfer overpotential of the bath; or alternatively, creating a differential overpotential between the surface of a high aspect ratio circuit board and the recesses of such boards. The additive may be a single or multi-component additive.
Abstract:
A method for determining the effective quantity of an organic additive in an electroplating bath involving passing an inert electrode through a predetermined sequence of voltammetric steps including a step of plating the electrode at a given applied potential, stripping the plated metal at a given applied potential, and conditioning the inert electrode without applied potential; correlating the quantity of additive with the coulombs utilized during the metal stripping step; and using the same predetermined sequence of voltammetric steps for a bath having an unknown quantity of additive.
Abstract:
The invention discloses the use of an additive for acid copper plating bath which is chosen based on criteria of creating a shift in the charge transfer overpotential of the bath; or alternatively, creating a differential overpotential between the surface of a high aspect ratio circuit board and the recesses of such boards. The additive may be a single or multi-component additive.
Abstract:
A method for determining the effective quantity of an organic additive in an electroplating bath involving passing an inert electrode through a predetermined sequence of voltammetric steps including a step of plating the electrode at a given applied potential, stripping the plated metal at a given applied potential, and conditioning the inert electrode without applied potential; correlating the quantity of additive with the coulombs utilized during the metal stripping step; and using the same predetermined sequence of voltammetric steps for a bath having an unknown quantity of additive.