摘要:
An implantable prosthesis can be formed from an improved biocompatible material that provides for cellular colonization of the biocompatible material. Specifically, the biocompatible material is a rigid porous material. In embodiments of particular interest, the implantable prosthesis is a mechanical heart valve prosthesis with a rigid occluder. In some embodiments, the rigid occluder is formed from the biocompatible material. A filler comprising a hydrogel or a structural protein can be located within the pores. In some embodiments, a bioactive agent is within the pores. In some embodiments, the rigid occluder is formed from a polymer material, a carbonaceous solid or a ceramic material. The pores can extend through the rigid material.
摘要:
Improved dip coating methods and mandrels for forming polymer leaflets and valve prostheses are disclosed. The mandrel (300,324,350) has a top surface and an outer surface comprising a plurality of ridges (306,402) and contoured surfaces extending to the ridges. An edge (312) on the mandrel separates the top surface and the contoured surfaces, with the mandrel edge corresponding to the free edge of the leaflet. In preferred embodiments, the edge separating the top surface from the contoured surfaces is sharp. The polymer formed on the top surface can be efficiently separated from the remaining portions of the polymer structure to form the free edges of the leaflets.
摘要:
An implantable prosthesis can be formed from an improved biocompatible material that provides for cellular colonization of the biocompatible material. Specifically, the biocompatible material is a rigid porous material. In embodiments of particular interest, the implantable prosthesis is a mechanical heart valve prosthesis with a rigid occluder. In some embodiments, the rigid occluder is formed from the biocompatible material. A filler comprising a hydrogel or a structural protein can be located within the pores. In some embodiments, a bioactive agent is within the pores. In some embodiments, the rigid occluder is formed from a polymer material, a carbonaceous solid or a ceramic material. The pores can extend through the rigid material.