摘要:
Ultra-hard constructions (10) comprise a polycrystalline diamond-body (12, a first metallic substrate (14) attached thereto, and a second metallic substrate (16) attached to the first metallic substrate (14). The first and second substrates (14, 16) each comprise a first hard particle phase and a second binder material phase, where the hard particles in the second substrate (16) are sized larger than those in the first substrate (14). The first substrate (14) may contain a greater amount of binder material than the second substrate (16). The first substrate (14) facilitates sintering the diamond body (12) during HPHT conditions, and the second substrate (16) provides an improved degree of erosion resistance when placed in an end-use application. The construction may be formed during a single HPHT process. The second substrate (16) may comprise 80 percent or more of the combined thickness of the first and second substrates (14, 16).
摘要:
The present disclosure relates to cutting elements incorporating polycrystalline diamond bodies used for subterranean drilling applications, and more particularly, to polycrystalline diamond bodies having a high diamond content which are configured to provide improved properties of thermal stability and wear resistance, while maintaining a desired degree of impact resistance, when compared to prior polycrystalline diamond bodies. In various embodiments disclosed herein, a cutting element with high diamond content includes a modified PCD structure and/or a modified interface (between the PCD body and a substrate), to provide superior performance.
摘要:
A method of forming a metal deposit on an ultra-hard material. In an embodiment, the method includes providing a plurality of ultra-hard particles, mixing the ultra-hard particles in a solution with a metal salt, drying the solution to create a mixture of metal salt particles adhered to surfaces of the ultra-hard particles, heating the mixture to convert the metal salt particles into metal deposits on the surfaces of the ultra-hard particles, and HTHP sintering the mixture of ultra-hard particles with the metal deposits to form a polycrystalline ultra-hard material.
摘要:
Thermally stable polycrystalline constructions comprise a diamond body joined with a substrate, and may have a nonplanar interface. The construction may include an interlayer interposed between the diamond body and substrate. The diamond body preferably has a thickness greater than about 1.5 mm, and comprises a matrix phase of bonded together diamond crystals and interstitial regions disposed therebetween that are substantially free of a catalyst material used to sinter the diamond body. A replacement material is disposed within the interstitial regions. A population of the interstitial regions may include non-solvent catalyst material and/or an infϊltrant aid disposed therein. The diamond body comprises two regions; namely, a first region comprising diamond grains that may be sized smaller than diamond grains in a second region, and/or the first region may comprise a diamond volume that is greater than that in the second region.
摘要:
The present disclosure relates to cutting elements incorporating polycrystalline diamond bodies used for subterranean drilling applications, and more particularly, to polycrystalline diamond bodies having a high diamond content which are configured to provide improved properties of thermal stability and wear resistance, while maintaining a desired degree of impact resistance, when compared to prior polycrystalline diamond bodies. In various embodiments disclosed herein, a cutting element with high diamond content includes a modified PCD structure and/or a modified interface (between the PCD body and a substrate), to provide superior performance.
摘要:
The present disclosure relates to cutting tools incorporating polycrystalline diamond bodies used for subterranean drilling applications, and more particularly, to a polycrystalline diamond body joined to a substrate by a fastening member to form a cutting element. The polycrystalline diamond body may be binderless polycrystalline diamond, non-metal catalyst polycrystalline diamond, leached polycrystalline diamond, carbonate polycrystalline diamond, or polycrystalline cubic boron nitride. The polycrystalline diamond body includes an aperture and a fastening member extending through the aperture and metallurgically bonded to the substrate by a HPHT process.