Abstract:
A method for multiple phase light modulation, said method comprising providing a pixel (20) having at least two modulating elements (22),(24). The method further comprising addressing said at least two modulating elements (22), (24) whereby light incident on said addressed element undergoes discrete phase changes between addressable states. The method further comprises resolving light from said at least two modulating elements (22), (24), into a response having at least three unique phases. Other devices, systems and methods are also disclosed.
Abstract:
A method of forming a vacuum micro-chamber for encapsulating a microelectronics device in a vacuum processing chamber comprises the steps of forming a microelectronics device (14) on a substrate base (30). The next step is to cover microelectronics device (14) with an organic spacer such as photoresist in a form having a plurality of protrusions, such as a star shape form (36). The next step is to cover the organic spacer and substrate base (30) with the metal layer (24) so that the metal layer covers all of the organic spacer except for a predetermined number of access apertures (34) to the organic spacer. Next, the organic spacer is removed through access apertures (34) to cause metal layer (24) to form a shell over a vacuum chamber (20) between the microelectronics device (14) and metal layer (24). The next step is to seal vacuum chamber (20) by coating metal layer (24) and closing off access apertures (34). The method of the present invention has application to produce vacuum micro- diodes and micro-triodes, micro-mass spectrometers, micro-light bulbs, and micro-thermocouple gages, as well as numerous other applications.
Abstract:
An optical switching device with switch elements (224) similar to digital micromirror devices (DMD). The switching element (224) resides in a trench (216) between two elevated areas on the substrate (214a, 214b). Sending and receiving fibers (218a, 218b) face each other across the trench (216) with the switch element (224) between them. When the switch is ON, light travels through lenses (220a, 220b) in the trench (216) from one fiber (218b) to the other (218a). When the switch is flipped OFF, the element (224) is activated and blocks the light from the sending fiber (218b) by reflecting or absorbing the light from the sending fiber (218b). The switch is activated and possibly deactivated by addressing electrodes (226a, 226b) under the element (224), which deflects through an air gap towards the activated electrode (226b). For better deflection angles the posts can be arranged closer to one end of the element than the other. An alternate hinge architecture is also provided.
Abstract:
A method of forming a vacuum micro-chamber for encapsulating a microelectronics device in a vacuum processing chamber comprises the steps of forming a microelectronics device (14) on a substrate base (30). The next step is to cover microelectronics device (14) with an organic spacer such as photoresist in a form having a plurality of protrusions, such as a star shape form (36). The next step is to cover the organic spacer and substrate base (30) with the metal layer (24) so that the metal layer covers all of the organic spacer except for a predetermined number of access apertures (34) to the organic spacer. Next, the organic spacer is removed through access apertures (34) to cause metal layer (24) to form a shell over a vacuum chamber (20) between the microelectronics device (14) and metal layer (24). The next step is to seal vacuum chamber (20) by coating metal layer (24) and closing off access apertures (34). The method of the present invention has application to produce vacuum micro- diodes and micro-triodes, micro-mass spectrometers, micro-light bulbs, and micro-thermocouple gages, as well as numerous other applications.
Abstract:
A method for producing a vacuum microelectronics device (10) on a substrate (12) and insulating dielectric (14) first forms an electrode base (16) on the insulating dielectric (14). Next, electrode base (16) is covered with a first organic spacer (42) having an aperture (44) for exposing a portion of electrode base (16). Next, a metal layer (46) is applied over organic spacer (42) to form emitter (18) within aperture (44). After removal of organic spacer (42) and metal layer (46), a second organic spacer (44) and a grid material (20) are applied over emitter (18) and electrode base (16). Next, a third organic spacer (50) and an anode metal (22) with access apertures (34) and (36) are placed over the structure. After removing organic spacers (48) and (50), anode metal (22) is sealed with metal (26) to close off access apertures (34) and (36). The result is a vacuum microelectronics device (10) usable is a triode or diode.