摘要:
The present invention relates to cobalt oxyhydroxide particles and lithium cobaltate particles which have a high density and a uniformly grown crystal structure. These objects of the present invention can be achieved by cobalt oxyhydroxide particles having an average secondary particle diameter (D50) of 3.0 to 25.0 µm, a BET specific surface area (BET) of 0.1 to 20.0 m 2 /g, a tap density (TD) of 1.0 to 3.5 g/cm 3 in which the average secondary particle diameter (D50) and the BET specific surface area (BET) of the cobalt oxyhydroxide particles satisfy the relational formula; and by lithium cobaltate particles having an average secondary particle diameter (D50) of 15.0 to 25.0 µm, a specific surface area (BET) of 0.10 to 0.30 m 2 /g, a compressed density (CD; as measured by applying a pressure of 2.5 t/cm 2 thereto) of 3.65 to 4.00 g/cm 3 . The cobalt oxyhydroxide particles are useful as a precursor of a positive electrode active substance (lithium cobaltate particles) used in a non-aqueous electrolyte secondary battery, and the lithium cobaltate particles are useful as a the positive electrode active substance used in a non-aqueous electrolyte secondary battery.
摘要:
The present invention relates to nickel-cobalt-manganese-based compound particles which have a volume-based average secondary particle diameter (D50) of 3.0 to 25.0 µm, wherein the volume-based average secondary particle diameter (D50) and a half value width (W) of the peak in volume-based particle size distribution of secondary particles thereof satisfy the relational formula: W ‰¤ 0.4 x D50, and can be produced by dropping a metal salt-containing solution and an alkali solution to an alkali solution at the same time, followed by subjecting the obtained reaction solution to neutralization and precipitation reaction. The nickel-cobalt-manganese-based compound particles according to the present invention have a uniform particle size, a less content of very fine particles, a high crystallinity and a large primary particle diameter, and therefore are useful as a precursor of a positive electrode active substance used in a non-aqueous electrolyte secondary battery.