摘要:
The present disclosure relates to a method in a User Equipment (UE) for use in handover from its serving base station to a neighboring base station. The method includes: performing one or more downlink quality measurements of the neighboring base station on one or more downlink subframes in a TDD configuration of the neighboring base station to obtain a downlink quality measurement result; and transmitting said downlink quality measurement result to the serving base station for enabling the serving base station to determine whether to trigger the handover or not.
摘要:
The present invention discloses a node for transmission mode switching for downlink transmission in a downlink channel (100), comprising: a configuring unit (110) adapted to configure an initial transmission mode for the downlink transmission as a default transmission mode; a deriving unit (120) adapted to derive channel quality metric (CQM) of the downlink channel; a first determining unit (130) adapted to determine a first predefined threshold on the basis of link level simulation of a first transmission mode and a second transmission mode; and a first switching unit (140) adapted to switch the transmission mode from the initial transmission mode to the first transmission mode or the second transmission mode on the basis of the CQM and the first predefined threshold. The present invention provides a simple, direct and efficient approach for transmission mode switching for downlink transmission in a downlink channel on the basis of available feedback from UE (or other kinds of terminals if appropriate) and/or link adaptation decisions from eNB (or other kinds of base stations if appropriate), provides high peak rate while maintaining cell coverage, and provides a proprietary solution without any impact on protocol/standard or UE implementation.
摘要:
The embodiments relate to a method and a base station (110) for interference management in a cellular network (100) employing Space-Division uplink (UL) downlink (DL) Duplexing (SDD). The base station (110) assigns a plurality of Remote Radio Units (RRU) as Tx RRUs operable to dedicatedly transmit downlink signals to a plurality of UEs and Rx RRUs operable to dedicatedly receive uplink signals from the plurality of UEs at the same frequency band and same time as the transmission of the Tx RRUs. The base station then suppresses the interference caused by simultaneous transmission on the same frequency band by using a Tx spatial beamforming weighting matrix and a Rx spatial beamforming weighting matrix. In addition, the base station may perform cross-talk cancellation on the residual interference contained in the received signals by using the knowledge of the downlink traffic data.
摘要:
The invention relates to a method and arrangement (500) in a network communication node (13, 14) for adapting an amount of periodic resources. The periodic resources are semi statically configured to a user equipment (11, 12) within a cell (10) of a radio telecommunications network (1). The network communication node (13,14) is comprised in the radio telecommunications network (1) and controls an amount of radio channel resources within the cell (10) of a radio control channel. The amount of periodic resources is defined as a size of a control region, which control region is at least a part of the amount of radio channel resources. The user equipment (11,12) uses a specific control signalling type on the radio control channel. The network communication node determines a traffic load in the cell (10) and obtains a periodicity requirement indication, which indication is based on the control signalling type. The network communication node then determines the size of the control region based on the determined traffic load in the cell (10) and the obtained periodicity requirement indication and thereby adapts the amount of periodic resources for the cell (10).
摘要:
A method is performed by a device in a wireless network. The method includes receiving a transmission that includes a wideband channel quality indicator, determining a received signal power estimate for each frequency band of a frequency domain, and determining an average interference-plus-noise based on the wideband channel quality indicator and the received signal power estimate. The method further includes determining a signal-to-interference-plus-noise ratio estimate for each frequency band based on the average interference-plus-noise and the received signal power estimate, and performing a communicative operation based on the signal-to-interference-plus-noise ratio estimate.
摘要:
The present disclosure provides a method (100) in a wireless device for initiating a handover from a source base station to a target base station. The method includes the steps of: calculating (S110) a power offset indicative of a difference between a receiving power from the target base station and a receiving power from the source base station; obtaining (S120) a Time Division Duplex (TDD) configuration difference between a TDD configuration of the target base station and a TDD configuration of the source base station; calculating (S130) a TDD offset based on the TDD configuration difference and an uplink-downlink traffic model of the wireless device; and initiating (S140) the handover when a combination of the power offset and the TDD offset exceeds a threshold. The present disclosure also provides a wireless device (600), a method (700) in a base station and a base station (800).
摘要:
The present invention relates to a method for determining link adaptation parameters for a wireless device. The method is performed in a first radio network node of a wireless communication system. The first radio network node hosts a first cell serving the wireless device. The wireless device is interfered by a second cell. The method comprises predicting (410) a future position of the wireless device. The method also comprises estimating (420) a first radio channel quality value for the wireless device in the predicted future position, based on: pathloss values related to the wireless device in the predicted future position for the first and the second cell respectively; and a transmission power of the second cell. The method further comprises determining (430) link adaptation parameters for the scheduling of the wireless device in the future position using the estimated first radio channel quality value.