摘要:
The present invention relates to methods for making cross-linked oxidation-resistant polymeric materials and preventing or minimizing in vivo elution of antioxidant from the antioxidant-containing polymeric materials. The invention also provides methods of doping polymeric materials with a spatial control of cross-linking and antioxidant distribution, for example, vitamin E (±-Tocopherol), and methods for extraction/elution of antioxidants, for example, vitamin E (±-tocopherol), from surface regions of antioxidant-containing polymeric materials, and materials used therewith also are provided.
摘要:
The present invention relates to methods for making cross-linked oxidation-resistant polymeric materials and preventing or minimizing in vivo elution of antioxidant from the antioxidant-containing polymeric materials. The invention also provides methods of doping polymeric materials with a spatial control of cross-linking and antioxidant distribution, for example, vitamin E (±-Tocopherol), and methods for extraction/elution of antioxidants, for example, vitamin E (±-tocopherol), from surface regions of antioxidant-containing polymeric materials, and materials used therewith also are provided.
摘要:
The present invention relates to methods for making cross-linked oxidation-resistant polymeric materials and preventing or minimizing in vivo elution of antioxidant from the antioxidant-containing polymeric materials. The invention also provides methods of doping polymeric materials with a spatial control of cross-linking and antioxidant distribution, for example, vitamin E (α-Tocopherol), and methods for extraction/elution of antioxidants, for example, vitamin E (α-tocopherol), from surface regions of antioxidant-containing polymeric materials, and materials used therewith also are provided.
摘要:
The present invention relates to methods for making oxidation resistant homogenized polymeric materials and medical implants that comprise polymeric materials, for example, ultra-high molecular weight polyethylene (UHMWPE). The invention also provides methods of making antioxidant-doped medical implants, for example, doping of medical devices containing cross-linked UHMWPE with vitamin E by diffusion and annealing the anti-oxidant doped UHMWPE in a super critical fluid, and materials used therein.
摘要:
The invention relates to cross-link-resistant injectable hydrogel formulations and methods of partially or practically wholly inhibiting injectable hydrogel formulations from cross-linking during irradiation using anti-cross-linking agents, which facilitates injectability of the hydrogel formulation. The invention also relates to methods of making the cross-link-resistant, for example, irradiation cross-link resistant, injectable hydrogel formulations, and methods of administering the same in treating a subject in need.
摘要:
This present invention relates to drug eluting polymers, including novel biodegradable drug eluting polymers, which are added to the surface of a medical device to treat device associated complications and to deliver drug locally around the device. Methods of making polymers, for example, drug-eluting polymers, polymer compositions, and materials used therewith also are provided. The drug eluting polymers are obtained from the polymerization of macromonomers made of a connecting moiety, a biodegradable moiety and a cross- linkable moiety that are liquids at a temperature of 10°C to 40°C.
摘要:
The present invention relates to methods for making highly crystalline cross-linked polymeric material, for example, highly crystalline cross-linked ultra-high molecular weight polyethylene (UHMWPE). The invention also provides methods of making antioxidant-doped highly crystalline cross-linked polymeric material using high pressure and high temperature crystallization processes, medical implants made thereof, and materials used therein.
摘要:
Methods of chemically cross-linking antioxidant-stabilized polymeric material are provided. In one example embodiment, peroxide cross-linking can be used to improve wear resistance and the addition of antioxidant can be used to improve oxidation resistance of ultra-high molecular weight polyethylene. A balance between the amounts of peroxide(s) and antioxidant(s) in the polymeric material can ensure that enough cross-linking is achieved for wear reduction and that enough antioxidant is incorporated for improved long-term oxidative stability. In one example embodiment, peroxide(s) can be diffused into a consolidated polymeric material for cross-linking. In another embodiment, polymeric material is consolidated with a vinyl silane, an antioxidant, and a free radical initiator, and the consolidated polymeric material is contacted with water thereby forming an oxidation resistant, cross-linked polymeric material. Such materials can be used in orthopedic applications such as bearing surfaces in total joint implants, including total hips, total knees, total shoulders, and other total joints.