Abstract:
A method of forming thiolated poly(vinyl alcohol) hydrogels including reacting, in the presence of an acid, compounds containing a thiol functional group and a hydroxyl reactive group with one or more hydroxyl groups of poly(vinyl alcohol) via said hydroxyl reactive group, thereby forming thiolated poly(vinyl alcohol). The method further including reacting the thiol functional group of said compounds with a thiol reactive group of a crosslinker, thereby forming a hydrogel.
Abstract:
The present invention relates to methods for making cross-linked, oxidatively stable, and highly crystalline polymeric materials. The invention also provides methods of treating irradiation-cross-linked antioxidant-containing polymers and materials used therewith.
Abstract:
The present invention relates to methods for making cross-linked oxidation-resistant polymeric materials and preventing or minimizing in vivo elution of antioxidant from the antioxidant-containing polymeric materials. The invention also provides methods of doping polymeric materials with a spatial control of cross-linking and antioxidant distribution, for example, vitamin E (α-Tocopherol), and methods for extraction/elution of antioxidants, for example, vitamin E (α-tocopherol), from surface regions of antioxidant-containing polymeric materials, and materials used therewith also are provided.
Abstract:
The present invention relates to methods for making cross-linked oxidation-resistant polymeric materials and preventing or minimizing in vivo elution of antioxidant from the antioxidant-containing polymeric materials. The invention also provides methods of doping polymeric materials with a spatial control of cross-linking and antioxidant distribution, for example, vitamin E (±-Tocopherol), and methods for extraction/elution of antioxidants, for example, vitamin E (±-tocopherol), from surface regions of antioxidant-containing polymeric materials, and materials used therewith also are provided.
Abstract:
The present invention relates to methods for making oxidation resistant medical devices that comprise polymeric materials, for example, ultra-high molecular weight polyethylene (UHMWPE). The invention also provides methods of making antioxidant-doped medical implants, for example, doping of medical devices containing cross-linked UHMWPE with vitamin E by diffusion and materials used therein.
Abstract:
The invention provides fabricated tough hydrogels, hydrogel-containing compositions, and methods of making the same. The invention also provides methods of implanting or administering the tough hydrogels, or the hydrogel-containing compositions to treat a subject in need. Methods of cross-linking pre-solidified or pre-gelled hydrogel particles and making crosslinked tough hydrogels, and crosslinked tough hydrogel-containing compositions also are disclosed herein.
Abstract:
The present invention relates to methods for making oxidation resistant medical devices that comprise polymeric materials, for example, ultra-high molecular weight polyethylene (UHMWPE). The invention also provides methods of making antioxidant-doped medical implants, for example, doping of medical devices containing cross-linked UHMWPE with vitamin E by diffusion and materials used therein.
Abstract:
The present invention relates to methods for making cross-linked oxidation-resistant polymeric materials and preventing or minimizing in vivo elution of antioxidant from the antioxidant-containing polymeric materials. The invention also provides methods of doping polymeric materials with a spatial control of cross-linking and antioxidant distribution, for example, vitamin E (±-Tocopherol), and methods for extraction/elution of antioxidants, for example, vitamin E (±-tocopherol), from surface regions of antioxidant-containing polymeric materials, and materials used therewith also are provided.
Abstract:
In preferred embodiments, the present invention provides methods of controllably making a vinyl polymer hydrogel having desired physical properties without chemical cross links or radiation. The gelation process is modulated by controlling, for example, the temperature of a resultant vinyl polymer mixture having a gellant or using active ingredients provided in an inactive gellant complex. In accordance with a preferred embodiment, the method of manufacturing a vinyl polymer hydrogel includes the steps of providing a vinyl polymer solution comprising a vinyl polymer dissolved in a first solvent; heating the vinyl polymer solution to a temperature elevated above the melting point of the physical associations of the vinyl polymer, mixing the vinyl polymer solution with a gellant, wherein the resulting mixture has a higher Flory interaction parameter than the vinyl polymer solution; inducing gelation of the mixture of vinyl polymer solution and gellant; and controlling the gelation rate to form a viscoelastic solution, wherein workability is maintained for a predetermined period, thereby making a vinyl polymer hydrogel having the desired physical property. In further preferred embodiments, the present invention provides physically crosslinked hydrogels produced by controlled gelation of viscoelastic solution wherein workability is maintained for a predetermined period. In another aspect, the present invention provides kits for use in repairing intervertebral disks or articulated joints including a dispenser and single use containers housing components that form the vinyl polymer hydrogel.