摘要:
A superhydrophobic surface includes a plurality of microfeatures disposed on a substrate and a gas generator disposed within the microfeatures, the gas generator configured to generate a gas within the microfeatures. Gas is generated within the microfeatures when at least a portion of the microfeatures is in a wetted state to restore the microfeatures to a dewetted state. Gas generation is self-regulating in that gas generation automatically starts when a wetted condition exists and stops when sufficient gas has been generated to recover a dewetted state that restores superhydrophobicity.
摘要:
A method of fluid manipulation involves applying electric signals at one or more electrodes located on or adjacent to a surface in contact with a liquid that contains a surfactant. The electric field generated by the electric signals (e.g., biasing voltage) applied to the electrodes makes the liquid less wetting on the surface than the natural state and can be used to move or modify the shape of the liquid droplet placed on the surface. One embodiment makes a liquid dewet locally on a surface by applying electric signals locally on the surface so that the liquid can be electrically manipulated on a hydrophilic surface.
摘要:
Disclosed herein are methods of performing microchemical reactions and electro-wetting-on-dielectric devices (EWOD devices) for use in performing those reactions. These devices and method are particularly suited for preparing radiochemical compounds, particularly compounds containing 18F.
摘要:
A microstructured surface with microfeatures formed thereon and defining spaces between the microfeatures includes least one electrode of an electrode pair in the spaces, wherein electrodes of the pair are electrically connected to one another. The at least one electrode located in the space is configured to generate a gas in between the microfeatures when an electrolyte solution penetrates into the microfeatures. Importantly, the electrodes are not connected to any external power source. Because the microstructured surface is self-powered in replenishing the gas lost in a submerged condition, no additional provision to supply energy or regulate the replenishment is necessary for implementation and use.
摘要:
A method of forming a microstructured surface comprising: depositing electrodes (12, 14) on a surface of a substrate (4); securing a mold (7) against the surface of the substrate (4) containing the electrodes (12, 14), the mold containing a plurality of cavities therein; applying pressure between the mold and the substrate to force material from the substrate (4) into the plurality of cavities to form a plurality of microfeatures; and separating the mold from the substrate.