Abstract:
The present invention concerns a method of synthesizing a iodo- or astatoarene comprising the reaction of a diaryliodonium compound with a iodide or astatide salt, respectively. The invention also relates to said iodo- or astatoarene and diaryliodonium compound as such. The invention also concerns a method of synthesizing a iodo- or astatolabelled biomolecule and/or vector using said iodo- or astatoarene.
Abstract:
The invention relates to the compositions of formula I or its pharmaceutical acceptable polymorphs, solvates, enantiomers, stereoisomers and hydrates thereof. The pharmaceutical compositions comprises a salt of metformin and the methods for treating or preventing metabolic syndrome, prediabetes and diabetes may be formulated for oral, buccal, rectal, topical, transdermal, transmucosal, intravenous, parenteral administration, syrup, or injection. Such compositions may be used to treatment of diabetes mellitus, obesity, lipid disorders, hypertriglyceridemia, hyperglycemia, hyperinsulinemia and insulin resistance.
Abstract:
The present invention is directed to novel neuro-attentuating norketamine (NANKET) compounds according to any one of formulas (I - shown below), (I-A) and (I-B), or any of the compounds described in Tables A-D, or in any of the Examples provided herein, and pharmaceutically acceptable salts thereof, novel pharmaceutical formulations and novel methods of uses thereof. The present invention also features novel oral neuro-attenuating ketamine (NAKET) and neuro-attenuating norketamine (NANKET) modified-release pharmaceutical formulations, and novel methods of administration thereof, which ensure the steady release of a therapeutically effective amount of ketamine, norketamine, or derivatives thereof from the oral modified-release pharmaceutical formulations without neurologically toxic spikes in plasma concentration of the ketamine, norketamine, or derivatives during the release periods.
Abstract:
A composition comprising a radioactive fluorine-labeled amino acid compound is provided, which can be prevented from radiolysis. Disclosed is a composition which comprises a solution containing a radioactive fluorine-labeled amino acid compound as an effective ingredient, in which the pH value of the solution is kept at 2.0-5.9, more preferably 2.0-4.9 in order to inhibit radiolysis. Also, it is possible to further inhibit radiolysis by adding thereto a pharmaceutical additive capable of inhibiting radiolysis, such as a sugar, a sugar alcohol and a sugar lactone, whilst the pH is kept at 2.0-5.9.
Abstract:
The present invention provides a composition comprising anti-1-amino-3-18F-fluorocyclobutyl-1-carboxylic acid (18F-FACBC) having an improved impurity profile compared with previous such compositions. Also provided is a method to obtain said composition.
Abstract:
The present invention relates to a compound of formula (I) wherein: - i is 0 or 1; j is 0 or 1; k is 0 or 1; - R1 and R2 are in particular H, (C1-C12)alkyl, or a group of formula C(O)R; - R is a, linear or branched, alkyl radical, comprising at least 19 carbon atoms; - R3 is H and k=0 when j=1; or, when j=0, R3 is -C(O)R or -L-C(O)R; - L, U and L" are linkers; wherein, when j=0, at least one of the groups R1; R2 and R3 comprises a radical R.
Abstract:
The present invention relates to the field of radiopharmaceuticals for in vivo imaging, in particular to a method of purifying a radiotracer which comprises 18F-labelled aminoxy-functionalised biological targeting moiety. The invention provides radioprotectant-containing radiopharmaceutical compositions of the tracers, as well as associated automated methods and cassettes.
Abstract:
Versatile and functionalised intermediates for the synthesis of vitamin D and novel vitamin D derivatives. The invention provides novel intermediates for the complete synthesis of vitamin D and allows a great versatility of functional groups in the final vitamin derivatives. The invention also provides vitamin derivatives that are epimeric in position 3 and vitamin derivatives with a wide range of functionalities in position 18, including compounds with isotopic labeling