摘要:
A system includes an antenna, an impedance measurement circuit, an impedance tuning circuit, and a controller. The impedance measurement circuit can include a test current source that conveys a test current through the antenna, and a voltage sensor that measure a voltage across the antenna while the test current is conveyed through the antenna. The impedance tuning circuit can be coupled to the antenna leads and can include one or more reactive elements that can be selectively coupled to the antenna, or otherwise adjusted, to effect adjustment of the impedance connected to the antenna. The controller can: (i) use the impedance measurement circuit to obtain a measurement indicative of an impedance of the antenna; (ii) determine an adjustment to the impedance tuning circuit based on the obtained measurement; and (iii) cause the impedance tuning circuit to make the determined adjustment.
摘要:
A wearable electronic device is described. The wearable electronic device includes two communications antennae. A first antenna of the two is a current-carrying antenna electrically and physically connected to a printed circuit board of the wearable electronic device and housed in a first portion of a housing that is configured for mounting on a person's skin. A second antenna of the two is a scatterer antenna physically connected to an interior surface of a second portion of the housing and configured to overlap a portion of the current-carrying antenna. The second portion of the housing faces away from the person's skin when the wearable device is mounted on the person's skin. Current from the current-carrying antenna is induced in the scatterer antenna to enable communications between the wearable electronic device and one or more other electronic devices.
摘要:
A reader device includes an array of antenna coils configured to electromagnetically couple with devices implanted beneath or within skin of a human body. An implanted device can include a loop antenna or other means configured to couple with at least one antenna coil of the reader device to receive radio frequency energy from the reader device. The antenna coil array is configured to mount to the skin surface to improve the coupling between the implanted device and coils of the array. Further, the reader device is configured to select two or more antenna coils of the array and to operate the selected antenna coils to emit radio frequency power at respective amplitudes and relative phases to provide radio frequency power to the implanted device while increasing efficiency of the power transfer and reducing the exposure of the skin to radio frequency energy.
摘要:
A reader device includes an array of antenna coils configured to electromagnetically couple with devices implanted beneath or within skin of a human body. An implanted device can include a loop antenna or other means configured to couple with at least one antenna coil of the reader device to receive radio frequency energy from and transmit radio frequency transmissions to the reader device. The antenna coil array is configured to mount to the skin surface to improve the coupling between the implanted device and coils of the array. Further, the reader device is configured to select one or more antenna coils of the array and to operate the selected antenna coil to communicate, via radio frequency transmissions, with and/or provide radio frequency power to the implanted device. An antenna coil of the array can be selected based on a detected amount of coupling with the implanted device.
摘要:
A wearable electronic device is described. The wearable electronic device includes two communications antennae. A first antenna of the two is a current-carrying antenna electrically and physically connected to a printed circuit board of the wearable electronic device and housed in a first portion of a housing that is configured for mounting on a person's skin. A second antenna of the two is a scatterer antenna physically connected to an interior surface of a second portion of the housing and configured to overlap a portion of the current-carrying antenna. The second portion of the housing faces away from the person's skin when the wearable device is mounted on the person's skin. Current from the current-carrying antenna is induced in the scatterer antenna to enable communications between the wearable electronic device and one or more other electronic devices.