摘要:
A motion digitizing and evaluating device, capable of preparing recordings or motion files more accurate - from several aspects - than those known so far, even without a permanent external reference signal. In addition to the inertial measurement units fixed to the separately moving body parts or spare parts of the examined person, living creature or objects (2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18), basic parts of the device are also the pressure-sensitive sole units (19, 20) and the pressure sensor gloves (21, 22), thanks to which the location-changing movements can be truly tracked by the virtual bone system mapped by the software. With more accurate motion detection, the external magnetic oriantation - which has so far been inevitable for such purposes in the previous systems - or the application of multi-axial magnetometers can be easily eliminated. A part of the patent is a strap vest for the more precise fixing of the strain-related sensors on the back.
摘要:
Systems are described for monitoring extremities for injury or damage following a physical impact. A device embodiment includes, but is not limited to, a deformable substrate; a sensor assembly coupled to the deformable substrate, the sensor assembly configured to generate one or more sense signals based on detection of a physical impact to a body portion and based on detection of a physiological parameter; circuitry operably coupled to the sensor assembly and configured to receive the one or more sense signals based on detection of the physical impact and to determine whether the physical impact exceeds a threshold impact value, the circuitry configured to instruct the sensor assembly to detect one or more physiological parameters of the body portion when the physical impact exceeds the threshold impact value; and a reporting device operably coupled to the circuitry.
摘要:
Systems are described for monitoring extremities for injury or damage following a physical impact. A device embodiment includes, but is not limited to, a deformable substrate; a sensor assembly coupled to the deformable substrate, the sensor assembly configured to generate one or more sense signals based on detection of a physical impact to a body portion and based on detection of a physiological parameter; circuitry operably coupled to the sensor assembly and configured to receive the one or more sense signals based on detection of the physical impact and to determine whether the physical impact exceeds a threshold impact value, the circuitry configured to instruct the sensor assembly to detect one or more physiological parameters of the body portion when the physical impact exceeds the threshold impact value; and a reporting device operably coupled to the circuitry.
摘要:
A network of wearable sensors is disclosed that can include a first sensor configured to be worn or carried on a first part of a body and a second sensor configured to be worn or carried on a second part of the body. The network can include, or can communicate with, a mobile device that can receive sensor information from both the first and second sensors. The combined sensor information can be used to determine the stance or motions of a user wearing or carrying the first and second sensors. The sensor information can also be used to determine that a user is performing a particular activity, exercise, or the like. Recognized activities or exercises can be tracked and recorded throughout a workout. Sensors can also include mechanisms to provide user feedback, and software applications can provide statistics and progress information based on tracked activity.
摘要:
The present invention relates to a system device and method for monitoring infant oral motor kinetics (OMK), which can be used to assess the functional significance of the different sucking components, i.e., the plasticity of infant sucking skills in relation to their oral feeding performance, at a particular time, during the developmental period and/or during preventive or therapeutic intervention programs. It is a unique system and apparatus that provides a means to study the nonnutritive and/or nutritive sucking skills, i.e., the Suction and/or Expression components of sucking, of infants in the natural setting, i.e., during a normal feeding session. OMK sensors, tracked in real-time by the monitoring system, include miniature pressure transducers, or pressure sensitive pads, attached to the nipple for measuring intraoral pressure pulses during Suction, and for measuring compression/stripping pressure pulses during Expression; and a miniature flow sensor for measuring fluid flow rate, which can be integrated over time to determine the volume of milk removed (bolus) per suck. Other signals, such as respiration, swallowing, thermal, optical, and acoustic signals can be recorded and compared along with the instrumented-nipple signals, in an OMK monitoring system.
摘要:
Provided are methods and devices for measuring pressure exerted against a surface. In an aspect, the surface corresponds to the urethra and the device measures the pressure exerted against the urethra. Methods include treatment of a patient suffering urinary stress incontinence. A pressure sensor system is used to determine, pre-surgically, the minimum pressure required to alleviate incontinence. During surgery, the pressure sensor system is employed to ensure the surgical intervention provides a corresponding minimum pressure that was clinically identified. In this manner, the surgical intervention is precisely monitored and measured to insure the appropriate pressure is exerted on the urethra to alleviate stress incontinence, thereby improving surgical outcome and decreasing post-operative complications.
摘要:
The work load of an operator (1) during the performance of a cycle of manual operations is evaluated considering the simultaneous presence of forces applied on a given part of the body of the operator and an oscillation angle of one or more articulations associated to said part of the body of the operator. Means are provided with sensors of said forces and said angles (3, 5) and the pairs of values of force and angle are processed using - as classifying parameter - the data of an electromyographic detection which measures the muscular activity and the muscular fatigue of the operator during the performance of the cycle of manual operations.