摘要:
CBCT apparatus (1, 11) configured for acquiring patient's two distinct pluralities of X-ray raw projections to be combined for dual energy imaging, comprising an X-ray source and an X-ray detector, said X-ray source and detector being supported in an opposed position, the object under investigation being positioned in an intermediate position between said X-ray source and detector and in the propagation bundle of the radiation emitted by said X-ray source, moreover said X-ray source and detector being movable along a pre-set trajectory thanks to at least a rotational movement of said X-ray source and detector around a rotation axis (R), wherein the acquisition of the first plurality of raw radiographic projections occurs with a first voltage of said X-ray source, while the acquisition of the second plurality of raw radiographic projections occurs with a second voltage of said X-ray source, different from the first voltage, characterized in that for acquiring the first plurality of raw projections at the first voltage, the rotation of said X-ray source and detector around the common axis of rotation (R) occurs in a direction opposite to the rotation direction of said X-ray source and detector around the common rotation axis (R) during the acquisition of the second plurality of raw radiographic projections at the second voltage, and in that the patient maintains the same position during the acquisition of the second plurality of raw images, which occurs immediately after the acquisition of the first plurality of raw projections.
摘要:
A tomography apparatus includes a data obtainer and an image processor. The data obtainer performs a tomography scan on a moving object and obtains raw data of the object The image processor reconstructs a first tomography image of the object for a first slice section in a first phase from the raw data and reconstructs a second tomography image in a second phase, which is different from the first phase, for the first slice section of the object by using the raw data. The image processor also generates motion information indicating a three-dimensional (3D) motion of the object. The second phase is a phase beyond a phase range of the raw data.
摘要:
The insertion unit support system is provided for a tubular insertion system, and generates lumen information including the shape and location of a lumen based on the pre-acquired information about the lumen of a subject as an observation target that includes image information of two- or higher dimensional images, i.e., three-dimensional images or three-dimensional tomograms, so that the lumen information is used as support information for inserting the insertion unit of an endoscope. The lumens of the subjects targeted for the support of the insertion unit support system may vary in shape and location, and are deformed according to the shape of an inserted insertion unit. Thus, the support information is corrected and updated based on the deformation.
摘要:
According to one embodiment, the x-ray apparatus comprises an x-ray source adapted to emit an x-ray beam, a detector adapted to receive the x-ray beam of the x-ray source, wherein the x-ray source is adapted to be moved in relation to a first portion of the x-ray apparatus, wherein the detector is adapted to be moved in relation to a first portion of the x-ray apparatus, the x-ray apparatus further comprising a control unit for controlling the movement of the x-ray source and detector, wherein the x-ray source and the detector are adapted to rotate in relation to a first portion of the x-ray apparatus, wherein further the x-ray beam is directed essentially towards the detector during the movement of the x-ray source and the detector.
摘要:
A CT angiography apparatus compensates for respiratory motion. During a helical scan, a radiation source and a detector generate data sets corresponding to a plurality of sub-volumes of a blood vessel over a plurality of cardiac cycles. Sub-volume data sets corresponding to a selected cardiac phase are reconstructed into a plurality of sub-volume images. Characteristic points in the sub-volume images are identified. A computer routine or processor calculates a respiratory motion vector based on the identified characteristic points in a plurality of the sub-volume images. An image reconstruction routine or processor reconstructs the original sub-volume data in the selected cardiac phase into a volume image representation using the calculated respiratory motion vector.
摘要:
The present application is directed toward the generation of three dimensional images in a tomography system having X-ray sources offset from detectors, in particular in a system where the sources are located on a plane, while detectors are located on multiple parallel planes, parallel to the plane of sources and all the planes of detectors lie on one side of the plane of sources. A controller operates to rebin detected X-rays onto a non-flat surface, perform two dimensional reconstruction on the surface, and generate the three dimensional image from reconstructed images on the plurality of surfaces.
摘要:
A tomography apparatus that may reduce partial scan artifacts includes: a data acquirer configured to acquire tomography data when X-rays are emitted as a cone beam to an object while rotating by one cycle angular section that is less than one rotation; and an image reconstructor configured to reconstruct a tomography image by using corrected tomography data that is obtained by applying to the tomography data a weight that is set based on at least one of a view that is included in the one cycle angular section and a cone angle in the cone beam.
摘要:
The invention relates to a computed tomography system (30). Several sets of spectral projections, which correspond to different positions of a radiation source (2) along a rotation axis (R), are decomposed into first projections being indicative of a contrast agent and second projections being not indicative of the contrast agent. An image is generated by a) determining for each first projection a contrast value being indicative of a total amount of contrast agent and scaling the first projections such that for different first projections of a same set the same contrast value is determined, and reconstructing an image based on the scaled first projections, and/or b) reconstructing for the different sets first images, scaling the first images such that they have a same intensity in overlap regions and combining the scaled first images. Thus, different contrast agent amounts can be balanced, thereby allowing for an improved image quality.