摘要:
A method for separating resins of an exhausted, mixed bed resin. The exhausted, mixed bed resin includes (a) an exhausted cation exchange resin having a first density and a first conductance value when suspended in the classifying fluid at a first concentration; (b) inert particulate material having a second density that is less than the first density and having a second conductance value when suspended in the classifying fluid that is at most about 30 percent at the conductance of the cation exchange resin when measured in the classifying fluid at the first concentration; and an exhausted anion exchange resin having a third density that is less than the second density and also having a third conductance value that is greater than the second conductance value when the exhausted anion exchange resin is suspended in classifying fluid and measured at the first concentration. The mixed resin bed is classified with the classifying fluid in a container to form a vertical column of resin such that the cation exchange resin forms a bottom layer, the inert resin forms an intermediate layer and the anion exchange resin forms a top layer. The slurry is passed out of the bottom of the container while the classification is maintained. The conductance value of the passing slurry is measured, and after the conductance value has become substantially constant, the conductance value is stored to determine an initial conductance value. Subsequent conductance values of the passing slurry are also measured and those subsequent conductance values are compared to the initial conductance value. The passage of the slurry out of the container is terminated when the first subsequently measured conductance value is at most about 30 percent of the initial conductance value. A second embodiment of the invention utilizes only cation and anion exchange resin. The method steps are substantially the same as recited with the embodiment utilizing the inert resin, except that the slurry passage is terminated when the first subsequently measured conductance value is at most about 55 percent of the initial cation exchange resin conductance.
摘要:
The interrelated group of inventions relates to methods and devices for raw material lump separation and can be used for dressing ferrous and non-ferrous metal ores, mining chemical feedstock, secondary raw material and technogenic waste. The essence of the inventive method and device lies in that a useful component containing lump and a barren rock is irradiated by an ultrahigh frequency electromagnetic field (UHF). Said radiation frequency is selected in such a way that the electromagnetic wave penetration depth dependent of lump material properties is greater than the lump maximum linear dimension at the peak attenuation of the electromagnetic wave. UHF electromagnetic radiation energy absorbed by the lump material initiates the heating of the components thereof, wherein the component exhibiting a greater electrical conductivity absorbs the greater amount of UHF energy than the component exhibiting a lower electric conductivity during the same time, whereby the heating temperatures of the useful component and the barren stock measured after irradiation are different. The temperature law depends on the mass ratio of the lump components exhibiting different properties and is recorded by a thermographic system. Said invention makes it possible, under the same conditions, to increase the useful component content from 6-10 % to 18-25 %, the increment of the useful component mass ratio by 4.5 %, to reduce the useful component tailing up to 3 % and the energy consumption by 5 % by decreasing the raw material dilution during the processing thereof.
摘要:
The present invention provides a method and an apparatus for separating a mixture that are capable of separating a mixture containing a plurality types of particles, using a countercurrent classification technique, even when there is little difference in density and particle diameter depending on the types of particles. In the present invention, a mixture containing first particles and second particles is separated using a separation tube 13 having the inverted-conical or pyramidal shape or a substantially inverted-conical or pyramidal shape. The first particles and the second particles are made of substances having different magnetic susceptibilities. A fluid is caused to flow upward through the separation tube 13, and the flow of the fluid is used to introduce the mixture into the separation tube 13. The first particles and the second particles are held in the separation tube 13 in a mixed state. A gradient magnetic field is applied to a region inside the separation tube 13 using magnetic field generation means 23, in the state where the first particles and the second particles are held in the separation tube 13. The magnetic field gradient of the gradient magnetic field has a vertical component.
摘要:
The invention relates to a device and to a method for the hydrodynamic removal of dense materials from a suspension, said device comprising a hydrocyclone (1), which holds the suspension, a classifying tube (2), which adjoins the hydrocyclone, and a storage chamber (3), which holds the removed dense materials, wherein a flushing water flow to the classifying tube (2) and a flushing water flow to the storage chamber (3) are provided, which can be controlled in a closed-loop or open-loop manner by means of a control element provided at the feed to the classifying tube and a control element provided at the feed to the storage chamber, respectively.
摘要:
The present interdependent group of inventions pertains to methods of and devices for lump separation of raw material and may be used in ferrous and non-ferrous metal ore dressing, concentration of mining and chemical raw materials, processing secondary raw materials and technological wastes. The method and the device are based on the idea that a lump comprises a useful component and refuse, and such lump is exposed to ultrahigh frequency (UHF) electromagnetic field. The frequency selected is such that electromagnetic wave penetration depth will exceed the maximum linear size of a lump under conditions of maximum damping of electromagnetic wave, which depends upon characteristics of such lump material. The energy of UHF electromagnetic radiation absorbed by a lump material causes heating of the lump components. A component with higher electric conductivity will absorb UHF energy higher than UHF energy absorbed by a component with lower electric conductivity during the same period of time. As a result, after removing the UHF field the useful component and the refuse will be heated to different temperatures. A lump temperature profile will depend on mass ratio of components with different properties within such lump, and said temperature profile is registered by a thermographic system. The invention implementation will make possible to increase the useful component content from 6 ~ 10% to 18 ~ 25% under conditions and loads unchanged, increase weight % of the useful component to 4.5% while decreasing its content in tails to 3%, decrease the total electric energy consumption by 5% due to decrease of refuse content in the raw material being concentrated. 7 independent claims, 6 figures
摘要:
A method for separating resins of an exhausted, mixed bed resin. The exhausted, mixed bed resin includes (a) an exhausted cation exchange resin having a first density and a first conductance value when suspended in the classifying fluid at a first concentration; (b) inert particulate material having a second density that is less than the first density and having a second conductance value when suspended in the classifying fluid that is at most about 30 percent at the conductance of the cation exchange resin when measured in the classifying fluid at the first concentration; and an exhausted anion exchange resin having a third density that is less than the second density and also having a third conductance value that is greater than the second conductance value when the exhausted anion exchange resin is suspended in classifying fluid and measured at the first concentration. The mixed resin bed is classified with the classifying fluid in a container to form a vertical column of resin such that the cation exchange resin forms a bottom layer, the inert resin forms an intermediate layer and the anion exchange resin forms a top layer. The slurry is passed out of the bottom of the container while the classification is maintained. The conductance value of the passing slurry is measured, and after the conductance value has become substantially constant, the conductance value is stored to determine an initial conductance value. Subsequent conductance values of the passing slurry are also measured and those subsequent conductance values are compared to the initial conductance value. The passage of the slurry out of the container is terminated when the first subsequently measured conductance value is at most about 30 percent of the initial conductance value. A second embodiment of the invention utilizes only cation and anion exchange resin. The method steps are substantially the same as recited with the embodiment utilizing the inert resin, except that the slurry passage is terminated when the first subsequently measured conductance value is at most about 55 percent of the initial cation exchange resin conductance.