摘要:
This invention provides a rolling method and a rolling apparatus, for flat-rolled metal materials capable of stably producing flat-rolled metal materials not having, or having extremely little, camber. A rolling method for a flat-rolled metal material uses rolling equipment including a rolling mill and at least a pair of pinch rolls for clamping a rolled material on the exit side of the rolling mill having a mechanism in which either one, or both, of upper and lower roll assemblies have a mechanism for supporting a work roll by split backup rolls split into at least three segments in an axial direction, the split backup roll group having a construction for supporting both a vertical direction load and a rolling direction load acting on the contacting work roll and each of the split backup rolls independently having a load measuring device. The method comprises the steps of directly measuring, or calculating on the basis of a predetermined measurement value, either one, or both, of left-right balance of a rolling direction force acting on a rolled material from the pinch rolls and the left-right balance of a rolling direction force acting on the work roll of the rolling mill through the rolled material; and controlling a left-right swivelling component of a roll gap of the rolling mill on the basis of the measured value or the calculated value of the left-right balance of the rolling direction force.
摘要:
A rolling mill having at least a pair of work rolls (12,13) each supported by a back-up roll (14,15) has at least one roll (16) of hollow construction to give the mill compliance. The hollow roll (16) may contain an arbor (20) to give local stiffness to the roll as required by the shape of the material (17) entering the mill.
摘要:
The present invention relates to a method of providing flatness control for rolling a strip in a mill comprising a plurality of rolls controllable by means of actuators. The method comprises the steps of: receiving (S1) flatness measurement data pertaining to a flatness of the strip; determining (S2) a flatness error as a difference between a reference flatness of the strip and the flatness measurement data; determining (S3) an adjusted flatness error based on the flatness error and weights for actuator position combinations which provide a flatness effect below a threshold value; and utilizing (S4) the adjusted flatness error for the control units to control the actuators to thereby control the flatness of the strip. A computer program product and a control system for carrying out the above method are also presented herein.
摘要:
The invention concerns a method for regulating flatness of a metal strip at the output of a roll housing comprising flatness regulating means including at least one dynamic flatness actuator, which consists, during the rolling process, in characterizing the flatness of the strip by measuring a quantity D in n points distributed across the width of the strip, from n measurements of the quantity D, then using an action model of flatness regulation on the flatness and an optimizing method, in determining an overall setpoint for the regulating means, said overall setpoint including at least one elementary setpoint for the dynamic actuator, such that a calculated flatness residual defect criterion is minimal, and in executing the overall setpoint with the flatness regulating means. The invention is characterized in that the action model on the flatness used for determining the overall setpoint comprises for the dynamic actuator, as many submodels as there are points for measuring the quantity D characteristic of flatness, each submodel enabling the effect of the dynamic actuator on the quantity D to be calculated at the corresponding point when a setpoint is applied thereto.
摘要:
The invention relates to a method and a rolling device (1) comprising at least two working rolls (2, 3) and a roll gap (4) between the working rolls (2, 3) for leading through and rolling rolled stock (5), such as for example a strip (6), preferably of metal, and possibly comprising an arrangement of supporting rolls (7, 8), wherein at least one measuring device (11) is also provided, for measuring a backward slip of the rolled material of the rolled stock before the roll gap (4), and wherein an open-loop or closed-loop control unit (13) is also provided, activating final control elements for setting the flatness of the rolled stock on the basis of the signals from the measuring device (11).
摘要:
A compensation method of an asymmetric strip shape of a strip rolling mill, for compensating the asymmetric strip shape of a strip caused in a machining process of the strip rolling mill in the prior art. The compensation method is realized by generating a non-linear asymmetric no-load roll-shaped profile curve through polishing an upper working roll and a lower working roll of a rolling mill and forming a non-linear asymmetric no-load roll gap between a transmission side and a working side of the upper and lower working rolls. The strip rolling mill in the prior art refers to a presently commonly used two-roll rolling mill driven by the transmission side of the working roll, a four-roll rolling mill equipped with a support roll and a multi-roll rolling mill equipped with a middle roll. The present invention is applied to compensate an asymmetric no-load roll gap on the working roll, thus reducing or eliminating an asymmetric strip shape defect caused by a machining process of the strip rolling mill in the prior art and an apparent or potential asymmetric strip shape quality problem of the product caused thereby, and also reducing production stability faults such as off tracking, drifting and pack rolling caused by the asymmetric strip shape in the production process of the strip rolling mill.
摘要:
The invention concerns a method for regulating flatness of a metal strip at the output of a roll housing comprising flatness regulating means including at least one dynamic flatness actuator, which consists, during the rolling process, in characterizing the flatness of the strip by measuring a quantity D in n points distributed across the width of the strip, from n measurements of the quantity D, then using an action model of flatness regulation on the flatness and an optimizing method, in determining an overall setpoint for the regulating means, said overall setpoint including at least one elementary setpoint for the dynamic actuator, such that a calculated flatness residual defect criterion is minimal, and in executing the overall setpoint with the flatness regulating means. The invention is characterized in that the action model on the flatness used for determining the overall setpoint comprises for the dynamic actuator, as many submodels as there are points for measuring the quantity D characteristic of flatness, each submodel enabling the effect of the dynamic actuator on the quantity D to be calculated at the corresponding point when a setpoint is applied thereto.
摘要:
This invention provides a rolling method and a rolling apparatus, for flat-rolled metal materials capable of stably producing flat-rolled metal materials not having, or having extremely little, camber. A rolling method for a flat-rolled metal material uses rolling equipment including a rolling mill and at least a pair of pinch rolls for clamping a rolled material on the exit side of the rolling mill having a mechanism in which either one, or both, of upper and lower roll assemblies have a mechanism for supporting a work roll by split backup rolls split into at least three segments in an axial direction, the split backup roll group having a construction for supporting both a vertical direction load and a rolling direction load acting on the contacting work roll and each of the split backup rolls independently having a load measuring device. The method comprises the steps of directly measuring, or calculating on the basis of a predetermined measurement value, either one, or both, of left-right balance of a rolling direction force acting on a rolled material from the pinch rolls and the left-right balance of a rolling direction force acting on the work roll of the rolling mill through the rolled material; and controlling a left-right swivelling component of a roll gap of the rolling mill on the basis of the measured value or the calculated value of the left-right balance of the rolling direction force.