摘要:
Supercritical upgrading reactors and reactor systems for upgrading a petroleum-based compositions comprising one or more catalyst layers and, in some embodiments, one or more purging fluid inlets, where one or more catalyst layers at least partially sift and convert heavy hydrocarbon fractions to light hydrocarbon fractions to produce an upgraded supercritical reactor product. In some embodiments, upgrading reactor systems comprise one or more supercritical upgrading reactors and one or more supercritical standby reactors alternating functions such that a supercritical upgrading reactor is converted to a supercritical standby reactor and the supercritical standby reactor is converted to a supercritical upgrading reactor, where the supercritical upgrading reactor upgrades a combined feed stream while a supercritical standby reactor delivers a cleaning fluid into the supercritical standby reactor.
摘要:
The present subject matter provides a process for hydrocarbon residue upgradation. The combination of the hydrocarbon residue along with aromatic rich hydrocarbons, catalysts and surfactants allow the operation of visbreaking unit at higher temperature while producing a stable bottom product.
摘要:
The present disclosure relates to a zeolite based catalyst composition comprising i. at least one rare earth metal, ii. at least one zeolite, and iii. optionally, at least one promoter; wherein, said rare earth metal is impregnated in said zeolite.The amount of said rare earth metal in said composition is in the range of 0.1 to 20 w/w%. The present disclosure also relates to a process for preparing a catalyst composition. Further, the present disclosure relates to a process for reducing olefin content in a hydrocarbon stream using the catalyst of the present disclosure.
摘要:
A process for the preparation of alkylate and middle distillate, the process comprising: (a) catalytically cracking a first hydrocarbon feedstock by contacting the feedstock with a cracking catalyst comprising a shape-selective additive at a temperature in the range of from 450 to 650 °C within a riser or downcomer reaction zone to yield a first cracked product comprising middle distillate and a spent cracking catalyst; (b) regenerating the spent cracking catalyst to yield a regenerated cracking catalyst; (c) contacting, within a second reaction zone, at least part of the regenerated cracking catalyst obtained in step (b) with a second hydrocarbon feedstock at a temperature in the range of from 500 to 800 °C to yield a second cracked product and a used regenerated catalyst, the second feedstock comprising at least 70 wt% C5+ hydrocarbons obtained in a Fischer-Tropsch hydrocarbon synthesis process; (d) using the used regenerated catalyst as at least part of the cracking catalyst in step (a); and (e) alkylating at least a portion of the second cracked product in an alkylation unit to obtain alkylate.
摘要:
A process is disclosed for fluid catalytic cracking of oxygenated hydrocarbon compounds such as glycerol and bio-oil. In the process the oxygenated hydrocarbon compounds are contacted with a fluid cracking catalyst material for a period of less than 3 seconds. In a preferred process a crude-oil derived material, such as VGO, is also contacted with the catalyst.
摘要:
An improved fluid catalytic cracking process for achieving high conversions of low quality feedstocks (containing metal contaminants, basic nitrogen and/or coke precursors) at relatively low severities, by passing the feedstock in series through a dual riser reactor system having a common catalyst stripper and regenerator, in contact with freshly regenerated catalyst which is passed in parallel from the regenerator through each of the riser reactors.
摘要:
A process for economically converting carbo-metallic oils to lighter products. The carbo-metallic oils contain 343°C+ (650°F+) material which is characterized by a carbon residue on pyrolysis of at least about 1 and a Nickel Equivalents of heavy metals content of at least about 4 parts per million. This process comprises flowing the carbo-metallic oil together with particulate cracking catalyst through a progressive flow type reactor having an elongated reaction chamber, which is at least in part vertical or inclined, for a predetermined vapor riser residence time in the range of about 0.5 to about 10 seconds, at a temperature of about 482°C (900°F) to about 760°C (1400°F), and under a pressure of about 10 to about 50 pounds per square inch absolute sufficient for causing a conversion per pass in the range of about 40 to 90% while producing coke in amounts in the range of about 6 to about 14% by weight based on fresh feed, and laying down coke on the catalyst in amounts in the range of about 0.3 to about 3% by weight. The spent, coke-laden catalyst from the stream of hydrocarbons formed by vaporized feed and resultant cracking products is separated, the sorbed hydrocarbons are stripped from the spent catalyst particles by mixing them with hot regenerated catalyst particles and passing the mixture through an elongated stripping chamber where desorbed hydrocarbons are cracked by regenerated catalyst particles which are present. The stripped catalyst is regenerated in one or more regeneration beds in one or more regeneration zones by burning the coke on the spent catalyst with oxygen. The catalyst particles are retained in the regeneration zone or zones in contact with the combustion-supporting gas for an average total residence time in said zone or zones of about 5 to about 30 minutes to reduce the level of carbon on the catalyst to about 0.25% by weight or less. The regenerated catalyst is recycled to the reactor and contacted with fresh carbo-metallic oil.
摘要:
The present subject matter provides a process for hydrocarbon residue upgradation. The combination of the hydrocarbon residue along with aromatic rich hydrocarbons, catalysts and surfactants allow the operation of visbreaking unit at higher temperature while producing a stable bottom product.
摘要:
Methods and systems for cracking a light fuel fraction and a heavy fuel fraction by fluidized catalytic cracking are described herein. The method for cracking may include feeding the light fuel fraction and a catalyst from a catalyst regenerator into a first reactor, cracking the light fuel fraction in the first reactor to produce an at least partially cracked light fuel fraction, transporting the at least partially cracked light fuel fraction and the catalyst from the first reactor to a second reactor, feeding the heavy fuel fraction into the second reactor, cracking the heavy fuel fraction and the at least partially cracked light fuel fraction in the second reactor to produce at least a product fuel and a spent catalyst, and transporting the spent catalyst to the catalyst regenerator and regenerating the catalyst in the catalyst regenerator.