摘要:
Steel for a high-strength bolt contains: from 0.50 mass% to 0.65 mass% carbon, from 1.5 mass% to 2.5mass% silicon, 1.0 mass% or more chromium, 0.4 mass% or less manganese, greater than 1.5 mass% molybdenum, 0.03 mass% or less phosphorus and sulfur combined, and balance iron and inevitable impurities. A high-strength bolt is formed using steel for a high-strength bolt that contains: from 0.50 mass% to 0.65 mass% carbon, from 1.5 mass% to 2.5mass% silicon, 1.0 mass% or more chromium, 0.4 mass% or less manganese, greater than 1.5 mass% molybdenum, 0.03 mass% or less phosphorus and sulfur combined, and balance iron and inevitable impurities.
摘要:
A hollow screw and related process of making is provided, wherein the hollow screw is formed from a generally circular corrosion resistant stainless steel disk cut from flat roll stock. The hollow screw includes a head and an elongated and hollow shaft having a wall thickness between about 0.2 to about 0.7 millimeters extending therefrom and defining a shank portion and a threaded portion having a plurality of threads thereon with a rotational drive mechanism configured to facilitate tightening via the threads. The process involves annealing to soften the stamped hollow screw, followed by thread rolling, and then age hardening the hollow screw. As such, the resultant hollow screw is relatively lightweight, about 50% the mass of a solid core screw made from the same material, with a sufficient thread strength to meet most aerospace applications and contributes to important aircraft fuel economy.
摘要:
A steel is used for providing a bolt that has a high strength and still exhibits excellent hydrogen embrittlement resistance. The steel contains C of 0.30% to 0.50%, Si of 1.0% to 2.5%, Mn of 0.1% to 1.5%, P of greater than 0% to 0.015%, S of greater than 0% to 0.015%, Cr of 0.15% to 2.4%, Al of 0.010% to 0.10%, N of 0.001% to 0.10%, Cu of 0.1% to 0.50%, Ni of 0.1% to 1.0%, Ti of 0.05% to 0.2%, and V of 0% to 0.2%, with the remainder including iron and inevitable impurities, in which a ratio [Ni]/[Cu] is 0.5 or more, and a total content [Ti]+[V] is 0.085% to 0.30%.
摘要:
Provided are: a boron-added high strength steel for bolt excellent in delayed fracture resistance even having a tensile strength of 1100 MPa or more without addition of large amounts of expensive alloy elements such as Cr and Mo: and a high strength bolt made from the boron-added high strength steel for bolt. The high strength steel for bolt contains C of 0.23% to less than 0.40%, Si of 0.23% to 1.50%, Mn of 0.30% to 1.45%, P of 0.03% or less (excluding 0%), S of 0.03% or less (excluding 0%), Cr of 0.05% to 1.5%, V of 0.02% to 0.30%, Ti of 0.02% to 0.1%, B of 0.0003% to 0.0050%, Al of 0.01% to 0.10%, and N of 0.002% to 0.010%, with the remainder being iron and inevitable impurities. The steel has a ratio ([Si]/[C]) of the Si content [Si] to the C content [C] of 1.0 or more and has a ferrite-pearlite mixed microstructure.
摘要:
The invention relates to a connecting element for low-temperature applications and to a compressor for low-temperature operation. It is proposed according to the invention that the connecting element is composed of a steel which is alloyed with 3 - 4 wt.% of nickel.
摘要:
The present invention relates to a method for heat treatment of a columnar work. In order to provide the method for heat treatment of a columnar work being able to attain a high productivity, a reduction of cost, and an improvement of quality, as compared with the prior art, the method for heat treatment of a columnar work of the present invention includes a quench-hardening step (S1) and a tempering step (S2) being carried out after the quench-hardening step (S1), the quench-hardening step (S1) includes a first quench-hardening step (S11) and a second quench-hardening step (S12) being carried out after the first quench-hardening step (S11), the entire region of the columnar work (3) from an outer circumferential surface (31f) to a core thereof (32), or a partial region thereof, is heated up to a temperature not lower than a transformation temperature Ac 3 , and then, the work is quench-hardened.