摘要:
A Process for the treatment or removal of impurities, such as arsenic, antimony or bismuth, generated as by-products during smelting and refining of copper concentrates, comprises subjecting the by-products to pressure oxidation along with a copper concentrate in a hydrometallurgical copper extraction process or the treatment of impurities when present in a concentrate by subjecting the concentrate to a hydrometallurgical extraction process. A similar process is isued for treating a copper ore or concentrate also containing fluoride.
摘要:
Impurity streams generated during the metallurgy of copper are hydrometallurgically processed at ambient pressure for recovery of primary values in an energy-efficient manner and with the capture and conversion of metallic impurities to states that are acceptable for disposal into the environment. Hallmark features of the various embodiments of this invention include the water leach of flue dust, a controlled acid leach stage in which metal species are solubilized, the extraction of copper as a sulfide, and the ability to operate the various process stages at essentially ambient pressure.
摘要:
A method and arrangement of separating arsenic and optionally antimony from a starting material, comprising -a low acid leaching step for leaching a first part of iron, arsenic, copper and optionally antimony, into the first leaching solution, -a first solid-liquid separation step, wherein a first solid leach residue is separated from the first leach solution, -a high acid leaching step for leaching a second part of iron, arsenic, copper and optionally antimony into the second leach solution, -a second solid-liquid separation step for obtaining a second solid leach residue and the second leach solution is recycled back to the low acid leaching step, -a precipitation step for obtaining a precipitate comprising ferric arsenate and optionally antimony compounds, and -a third solid-liquid separation step, wherein the solution comprising copper is separated from the obtained precipitate.
摘要:
A Process for the treatment or removal of impurities, such as arsenic, antimony or bismuth, generated as by-products during smelting and refining of copper concentrates, comprises subjecting the by-products to pressure oxidation along with a copper concentrate in a hydrometallurgical copper extraction process or the treatment of impurities when present in a concentrate by subjecting the concentrate to a hydrometallurgical extraction process. A similar process is isued for treating a copper ore or concentrate also containing fluoride.
摘要:
Ce procédé permet de séparer les éléments perturbateurs arsénic, le cas échéant antimoine, fer ou bismuth, de solutions fortement acides minérales par voie d'extraction de solvant au moyen de solutions organiques d'acides hydroxamiques et de séparer sélectivement les éléments perturbateurs les uns des autres. L'arsénic est stripé avec une solution aqueuse contenant des ions de métaux d'intérêt à une haute valeur pH dans une plage comprise entre 1,5 et 5, et l'antimoine, le fer ou le bismuth sont stripés avec ces acides complexants.
摘要:
The processes of the present disclosure can comprise feeding a furnace with a raw material chosen from a copper-containing material, a nickel-containing material, a cobalt-containing material and mixtures thereof. These materials can be quite complex and contain various levels of impurities and valuable metals (base metals, precious metals, platinum group metals, minor metals). The processes allow the volatilization of arsenic and indium contained therein, thereby obtaining a material at least partially depleted in at least one of arsenic and indium, wherein before volatilizing the material, composition of the material is optionally modified so as to obtain a ratio % S/(%(Cu/2)+%Ni+%Co) of about 0.5 to about 2. The processes can comprise feeding a melting device with the depleted material, and with a source of carbon in order to obtain a multi-layer product and an off gas, wherein before melting the depleted material, the depleted material composition is optionally modified so as to obtain a ratio % S/(% (Cu/2)+%Ni+%Co) of about 0.5 to about 2. While one of the main purposes of the processes of the present disclosure is to recover Cu, Ni and Co from complex materials, it also provides a means of recovering several other metals, including In, Ge, Pb, Bi, precious metals and platinum group metals. Cu, Ni, Co and other metals are conveniently recovered in different products from the processes (gaseous, dust, slag, matte, speiss and metal).
摘要:
Impurity streams generated during the metallurgy of copper are hydrometallurgically processed at ambient pressure for recovery of primary values in an energy-efficient manner and with the capture and conversion of metallic impurities to states that are acceptable for disposal into the environment. Hallmark features of the various embodiments of this invention include the water leach of flue dust, a controlled acid leach stage in which metal species are solubilized, the extraction of copper as a sulfide, and the ability to operate the various process stages at essentially ambient pressure.
摘要:
Impurity streams generated during the metallurgy of copper are hydrometallurgically processed at ambient pressure for recovery of primary values in an energy-efficient manner and with the capture and conversion of metallic impurities to states that are acceptable for disposal into the environment. Hallmark features of the various embodiments of this invention include the water leach of flue dust, a controlled acid leach stage in which metal species are solubilized, the extraction of copper as a sulfide, and the ability to operate the various process stages at essentially ambient pressure.
摘要:
The present invention relates to an improved method for the recovery of metal values, in particular copper and gold, from a metal value-bearing material containing arsenic and/or antimony and a source of sulphate ions, by means of a high temperature pressure oxidation process followed by cyanidation of the resultant high temperature pressure oxidation residue.