摘要:
There are provided a porous hollow fiber membrane capable of economically and efficiently recovering germanium which has heretofore been entirely disposed as a waste, and a method for recovery of germanium oxide using such a porous hollow fiber membrane. The porous hollow fiber membrane of the present invention is characterized by being obtained by reacting the residue of an epoxy group-containing compound subjected to irradiation-induced graft polymerization on a polyethylene-made porous hollow fiber membrane, with a compound capable of reacting with said reside to give a residue containing a structure represented by the following formula: (wherein R 1 and R 2 are a hydrogen atom or a lower alkyl group) or the following formula: and the method for recovery of germanium oxide according to the present invention is characterized by contacting an aqueous germanium oxide solution with the above porous hollow fiber membrane having chelate formability, to allow the porous hollow fiber membrane having chelate formability, to capture the germanium oxide contained in the aqueous solution, and then dissolving the captured germanium oxide into an acidic solution.
摘要:
A continuous system recovers germanium (Ge) from a chemical vapor deposit. A chemical vapor deposit scrubber scrubs a chemical vapor deposit to form a chemical vapor deposit scrubber solution. An equalization and neutralization mixer adds a caustic soda to the chemical vapor deposit scrubber solution to form an equalization and neutralization mixer solution having a pH above 12.0 to maintain the solubility of silicon oxide (SiO 2 ) and hypochlorite (ClO - ). A hypochlorite reduction mixer adds a peroxide to the equalization and neutralization solution to form a hypochlorite reduction solution to reduce hypochlorites. A precipitant and neutralization mixer adds a metal cation such as Epsom Salts (MgSO 4 ) and a caustic soda (NAOH) to the hypochlorite reduction solution to form a precipitant and neutralization solution to precipitate magnesium germanate (MgGeO 3 ) and magnesium silicon trioxide (MgSiO 3 ). A reactor tank adds a cationic polymer to the precipitant and neutralization solution to flocculate the germanium (Ge) and silicon (Si) solids and form a flocculation solution. A plate clarifier collects the flocculation solution to form a flocculated material. A filter press and the dryer processes and drys the flocculated material to produce a dry sludge of germanium (Ge) within a range of 5%-10% by weight.
摘要:
The invention relates to a method for treating a solution containing zinc sulphate, so that at least one of the rare metals such as indium, gallium and germanium can be separated from it. A portion of the metals to be separated can be precipitated from zinc sulphate solution by neutralizing the acidic solution and at least a portion is cemented by means of metal powder. The solid precipitates that are formed can be combined and treated subsequently in some suitable way to leach out the desired metals.
摘要:
The invention relates to a method for treating a solution containing zinc sulphate, so that at least one of the rare metals such as indium, gallium and germanium can be separated from it. A portion of the metals to be separated can be precipitated from zinc sulphate solution by neutralizing the acidic solution and at least a portion is cemented by means of metal powder. The solid precipitates that are formed can be combined and treated subsequently in some suitable way to leach out the desired metals.
摘要:
The method involved the following steps: a) leaching said IGCC ashes with an extracting agent selected amongst water, an aqueous solution of an acid and an aqueous solution of a base in order to solubilize all or part of the Ge contained in said IGCC ashes; b) separating the solid and liquid phases in the solution or suspension resulting from step a) into a solid phase (S1) and into a liquid phase (L1) which contains the Ge and c) recovering Ge in said liquid phase (L1). The inventive method makes it possible to upgrade the IGCC ashes by recovering the Ge and, optionally, other valuable metals, e.g. Ga, V and/or Ni.
摘要:
A chelate-forming porous hollow fiber membrane, characterized by being produced by reacting the residues of an epoxy compound radiation-grafted onto the surface of a polyethylene porous hollow fiber membrane with a compound which reacts with the residues to give residues containing a structure represented by formula (1) or (2) and a method for the recovery of germanium oxide, characterized by collecting germanium oxide contained in an aqueous solution by the use of the above hollow fiber membrane and then eluting the oxide.
摘要:
The invention relates to a method for treating a solution containing zinc sulphate, so that at least one of the rare metals such as indium, gallium and germanium can be separated from it. A portion of the metals to be separated can be precipitated from zinc sulphate solution by neutralizing the acidic solution and at least a portion is cemented by means of metal powder. The solid precipitates that are formed can be combined and treated subsequently in some suitable way to leach out the desired metals.
摘要:
In the invention, an electrochemical etching of crystalline germanium or a germanium alloy produces well-segregated chromatic clusters of nanoparticles. Distinct strong bands appear in the photoluminescence spectra under 350 nm excitation with the lowest peaks in wavelength identified to be at 430, 480, and 580 and 680-1100 nm. The material may be dispersed into a discrete set of luminescent nanoparticles of 1-3 nm in diameter, which may be prepared into colloids and reconstituted into films, crystals, etc.