Abstract:
An exhaust mixer (32) for a gas turbine engine where each outer lobe (44) has at the downstream end a circumferential offset in a direction corresponding to that of the swirl component of the flow entering the mixer (32). The mixer (32) has a crest line (45) having at least a downstream portion curved with respect with respect to a circumferential direction of the mixer (32) and/or a center line at the downstream end tilted with respect to a radial line extending to the tip of the outer lobe (44) to define the circumferential offset.
Abstract:
This combustion apparatus has a nozzle (35) in which a fuel injection port (41) for spraying fuel is formed on the center of the tip (35s) of said nozzle (35). Multiple water injecttion ports (42) are formed, at an interval in the circumferential direction, on the periphery of the fuel injection port (41) at the tip (35s) of the nozzle (25), and the water injection ports (42) are unevenly formed in the circumferential direction.
Abstract:
A geared turbofan engine includes a first rotor, a fan, a second rotor, a gear train, a fan casing, a nacelle and a plurality of discrete acoustic liner segments. The fan is connected to the first rotor and is capable of rotation at frequencies between 200 and 6000 Hz and has a fan pressure ratio of between 1.25 and 1.60. The gear train connects the first rotor to the second rotor. The fan casing and nacelle are arranged circumferentially about a centerline and define a bypass flow duct in which the fan is disposed. The plurality of discrete acoustic liner segments with varied geometric properties are disposed along the bypass flow duct.
Abstract:
Die Erfindung betrifft ein Austrittsleitgitter mit einer äußeren Wandung (34'), einer inneren Wandung (36') zur Bildung eines Ringkanals (22) und zur Führung des Heißgasstroms und mit mindestens einer Leitschaufel (32), die zwischen der äußeren Wandung (34') und der inneren Wandung (36') angeordnet ist, wobei zwischen der Vorderkante (E) der Leitschaufel (32) und dem stromabwärtigen Ende (35') der äußeren Wandung (34') mindestens eine querschnittsverringernde Engstelle (38') angeordnet ist. Dabei ist mindestens eine absolute Engstelle (38') in dem Bereich zwischen der Vorderkante (E) und dem stromabwärtigen Ende (35') näher zur Hinterkante (H) der Leitschaufel (32) angeordnet als zum stromabwärtigen Ende (35').
Abstract:
A gas turbine engine according to one disclosed non-limiting embodiment of the present disclosure includes an engine case, a multiple of fuel injectors mounted to the engine case, and a fire shield mounted to the engine case to surround at least one, but less than all, of the multiple of fuel injectors. In a further embodiment of the foregoing embodiment, the fire shield includes a sheet metal alloy layer. In the alternative or additionally thereto, in the foregoing embodiment the fire shield includes a composite cloth on an interior of the sheet metal alloy layer with respect to the engine case.
Abstract:
A method of reducing the fluid flow effects of one or more flow modifiers (19) in a passage (16), the method comprising: providing a plurality of aerofoil structures (15) in the passage (16), wherein the geometry of each aerofoil structure (15) is initially substantially the same; and shortening the trailing edge (18) of one or more selected aerofoil structures (17) in a chordwise direction and over at least a spanwise portion of the one or more selected aerofoil structures such that, when in use, the direction of the fluid flow (20a, 20e) in the vicinity of the one or more selected aerofoil structures is altered and the fluid flow effects of the one or more flow modifiers (19) in the passage are reduced.
Abstract:
An aircraft gas turbine engine nacelle (21) comprises a thrust reversal arrangement. The thrust reversal arrangement comprises at least first and second circumferentially spaced fixed thrust reverser cascade boxes (28a, 28b) each comprising a plurality of thrust reverser vanes (29) configured to direct air forwardly and circumferentially and at least one inter-leaved translating circumferential turning vane (37) configured to direct air in a direction having a circumferential component. The circumferential turning vane (37) is moveable from a stowed position provided between the first and second circumferentially spaced thrust reverser cascade boxes (28a, 28b), and a deployed position axially rearwardly of the thrust reverser cascade boxes (28a, 28b).
Abstract:
Die Erfindung betrifft einen Diffusor (1) einer thermischen Energiemaschine (3), insbesondere einer Gasturbine (5), mit einem Diffusoreintritt (20), mit einem Diffusoraustritt (22) und mit einer Vielzahl an Luftleitelementen (23), bei welchem ein Luftmassenstrom durch den Diffusoreintritt (20) hindurch in den Diffusor (1) hinein gelangt, und bei welchem der in den Diffusor (1) gelangte Luftmassenstrom durch den Diffusoraustritt (22) wieder aus dem Diffusor (1) hinaus gelangt und hierbei mittels der Luftleitelemente (23) als eine Vielzahl an Luftmassenpartialströmen (24) abströmt, wobei wenigstens zwei unmittelbar benachbarte Luftleitelemente (23) der Vielzahl an Luftleitelementen (23) derart ausgestaltet sind, dass deren Abströmwinkel α n bezogen auf die durch die in Umfangsrichtung (25) umlaufende Austrittsöffnung (31) des Diffusoraustritts (22) ausgestaltete Umfangsfläche (32) voneinander verschieden sind.
Abstract:
A bearing support housing for a gas turbine engine includes: an annular mounting flange; a first bearing cage including: an annular first bearing support ring; and an annular array of axially-extending first spring arms interconnecting the first bearing support ring and the mounting flange; and a second bearing cage including: an annular second bearing support ring; and an annular array of axially-extending second spring arms interconnecting the second bearing support ring and the mounting flange, the second spring arms defining spaces therebetween. The first spring arms are received between the second spring arms, and the bearing cages are sized so as to permit independent flexing motion of the first and second spring arms.
Abstract:
A method of reducing the fluid flow effects of one or more flow modifiers (19) in a passage (16), the method comprising: providing a plurality of aerofoil structures (15) in the passage (16), wherein the geometry of each aerofoil structure (15) is initially substantially the same; and shortening the trailing edge (18) of one or more selected aerofoil structures (17) in a chordwise direction and over at least a spanwise portion of the one or more selected aerofoil structures such that, when in use, the direction of the fluid flow (20a, 20e) in the vicinity of the one or more selected aerofoil structures is altered and the fluid flow effects of the one or more flow modifiers (19) in the passage are reduced.