摘要:
Bei einem bekannten Messverfahren wird das Brechzahlprofil eines zylinderförmigen optischen Gegenstandes, der eine Zylinder-Längsachse aufweist, um die radialsymmetrisch mindestens eine Schicht k mit einem Schichtradius r k und mit einer Schichtbrechzahl n k verläuft, dadurch ermittelt, dass eine Ablenkwinkelverteilung Ψ(y) gemessen und daraus anhand eines Modells das Brechzahlprofil rekonstruiert wird. Um hiervon ausgehend eine Methode anzugeben, die hinsichtlich Nachvollziehbarkeit, Genauigkeit und Reproduzierbarkeit verbessert ist, wird erfindungsgemäß vorgeschlagen, dass das Modell folgende Maßnahmen umfasst: (a) Aufbereitung der gemessenen Ablenkwinkelverteilung Ψ(y), umfassend eine Extremwertbestimmung der Ablenkwinkelverteilung, wobei eine aufbereitete Ablenkwinkelverteilung Ψ'(y) erhalten wird, (b) Transformation der aufbereiteten Ablenkwinkelverteilung Ψ'(y) zu einem aufbereiteten Brechzahlprofil n'(r), (c) Auswertung des aufbereiteten Brechzahlprofils n'(r) zur Festlegung von Orientierungswerten, umfassend einen Orientierungswert r* k für den Schichtradius und einen Orientierungswert n* k für die Schichtbrechzahl eines hypothetischen Brechzahlprofils n*(r), (d) Erzeugen einer simulierten Ablenkwinkelverteilung Ψ"(y) auf Basis des hypothetischen Brechzahlprofils n*(r) mit den Orientierungswerten r* k und n* k , und Transformation dieser Ablenkwinkelverteilung in ein simuliertes Brechzahlprofil n"(r), und (e) Anfitten des simulierten Brechzahlprofils n"(r) an das aufbereitete Brechzahlprofil n'(r) durch iteratives Anpassen der Parameter r* k und n* k bei Maßnahme (d), wobei ein angefittetes, simuliertes Brechzahlprofil n*(r) fit erhalten wird, das durch angepasste Parameter r* k,fit und n* k.fit definiert ist, und (f) Erhalten des Brechzahlprofils als das hypothetische Brechzahlprofil mit den angepassten Parametern r* k,fit und n* k,fit .
摘要:
An object is to improve the repeatability of measurements of an exit angle of an optical fiber, facilitate a measuring operation, and accurately measure exit angles of many optical fibers in a short time. A measurement end of an optical fiber is passed through a through hole of a holder. While the optical fiber is being rotated by using the through hole as a guide, output light from the measurement end is received by light receiving means. Coordinates of at least three points on a locus circle of the output light are measured to calculate a size of the locus circle. On the basis of the calculated size, the exit angle of the optical fiber is measured. The through hole of the holder has a small-diameter portion on a front side and a large-diameter portion on a rear side. An inside diameter of the small-diameter portion is 0.1 µm to 1.0 µm larger than a diameter of a bare fiber, and an inside diameter of the large-diameter portion is larger than a diameter of a sheathed fiber. The object described above is thus achieved.
摘要:
Systems and methods for inspecting wound optical fiber to detect and characterize defects are disclosed. The method includes illuminating the wound optical fiber with light from a light source and capturing a digital image based on measurement light that is redirected by the wound optical fiber to a digital camera. The method also includes processing the digital image with a computer to detect and characterize the defects. The types of defects that can be detected using the systems and methods disclosed herein include bubbles, abrasions, punctures, scratches, surface contamination, winding errors, periodic dimensional errors, aperiodic dimensional errors and dents.
摘要:
An object is to improve the repeatability of measurements of an exit angle of an optical fiber, facilitate a measuring operation, and accurately measure exit angles of many optical fibers in a short time. A measurement end of an optical fiber is passed through a through hole of a holder. While the optical fiber is being rotated by using the through hole as a guide, output light from the measurement end is received by light receiving means. Coordinates of at least three points on a locus circle of the output light are measured to calculate a size of the locus circle. On the basis of the calculated size, the exit angle of the optical fiber is measured. The through hole of the holder has a small-diameter portion on a front side and a large-diameter portion on a rear side. An inside diameter of the small-diameter portion is 0.1 µm to 1.0 µm larger than a diameter of a bare fiber, and an inside diameter of the large-diameter portion is larger than a diameter of a sheathed fiber. The object described above is thus achieved.
摘要:
The present disclosure relates to a non-invasive and real-time diagnostic analysis concept for an operational single mode optical fiber communication system and methods of using said system. The system comprises an optical fiber capable of being diagnosed non-invasively comprising an optical fiber for conveying a light beam that comprises an optical fiber comprising a first end for receiving the light beam and a second end opposed thereto, a core comprising an inner wall, and a cladding surrounding the core, the optical fiber further comprising at least one uncladded portion comprising a plurality of quantum dots dispersed in a medium, and wherein the quantum dots become activated by evanescent wave coupling resulting from total internal reflection of the light beam contacting the inner wall of the optical fiber core and wherein the activation results in emittance of light from the quantum dots.
摘要:
A waveguide coupling probe(10) for sending light into an optical waveguide on a substrate or for receiving light from an optical waveguide on a substrate is provided, the waveguide coupling probe comprisingan optical element (11) for guiding the light in a propagation direction, the optical element (11) having a facet (15) where the light enters or exits the optical element (11) and means for coupling the light between the optical element (11) and the waveguide. A waveguide coupling probe (10) according to the present invention is characterized in that the light coupling means are formed on the facet (15) and comprise a diffraction structure (14). In a preferred embodiment the optical element (11) may be an optical fiber and the diffraction structure (14) may be a strong diffraction structure, e.g. a metal grating structure.When bringing the waveguide coupling probe (10) in the vicinity of a waveguide on a substrate, the light that is guided by the waveguide may be diffracted into the optical element (11). Alternatively, light from the optical element (11) may be coupled into the waveguide. When using the waveguide coupling probe (10) for coupling light between the optical element (11) and a waveguide, the waveguide coupling probe may be positioned out of the plane of the waveguide. Furthermore a method is provided for forming an opticalstructure, e.g. a metal grating structure, on a facet (15) of an optical element (11).
摘要:
Disclosed is a monitoring system and method of monitoring for optical fiber drawing systems. The scattering monitor includes: a scattering monitor housing provided on a path drawing an optical fiber and having holes aligned on upper and lower ends of the scattering monitor housing with the optical fiber passing therethrough; a reflecting plate surrounding the optical fiber in the scattering monitor housing; a light condenser for converging light reflected from the reflecting plate; and, a light detector for detecting converged light and generating a corresponding electrical signal.
摘要:
A device for examining optical waveguides comprises a prism (2) to be positioned on the waveguide to be investigated (1), a point (7) at which incoming light enters the device, as well as control accessories to alter the angle of light directed to the prism (2) from the entering point (7) of incoming light. The control accessories include a mirror (3) whereby the projection of the reflecting surface of the mirror in the plane of altering the said angle is in the form of an ellipse. A rotatable mirror (4) is placed at the focal point (F1) of the said ellipse, the corner of the prism (2) being situated at the second focal point (F2) of the same ellipse.