摘要:
The present invention relates to a device comprising a biomolecular processor. Each biomolecular processor has one or more bioreactor chambers defined by a solid substrate; a support structure within each bioreactor; a cleaving enzyme immobilized to the support structure and operatively positioned within the bioreactor chamber to cleave monomer or multimer units of a biopolymer molecule operatively engaged by the cleaving enzyme; and one or more time-of-flight channels formed in the solid substrate and fluidically coupled to said one or more bioreactor chambers. Each of the time-of-flight channels have two or more sensors including at least (i) a first sensor contacting the time-of-flight channel proximate to the input end of the channel and (ii) a second sensor contacting the time-of-flight channel proximate to the output end of channel. The present invention further relates to methods of sequencing and identifying biopolymer molecules using the device.
摘要:
A system and method for acquisition of mass spectrometry data is configured to provide a stream of charged particles (e.g., from an analytical volume). A primary mass spectrometer (e.g., time-of-flight mass spectrometer) may be used to separate charged particles of the stream of charged particles based on their mass-to-charge ratio and detect the charged particles in a mass-to-charge spectrum. A stream of precursor ions having a selected mass range may be diverted from the stream of charged particles for fragmentation to provide fragment ions (e.g., fragment ions from the analytical volume). The fragment ions may be provided to a second mass spectrometer for analysis of the fragment ions (e.g., during the same time as the time-of-flight mass spectrometer is separating and detecting charged particles of the stream of charged particles based on their mass-to-charge ratio).
摘要:
A system and method of analyzing a sample is described. The system includes an ion source and a deflector for producing a plurality of ion beams each of which is detected in distinct detection regions. A detection system uses the information obtained from the detection region to analyze the sample.
摘要:
The invention relates to a secondary ion mass spectrometer and to a method for the secondary ion mass spectrometric analysis of a sample. A large number of secondary ion mass spectrometers is known in the prior art. Among said secondary ion mass spectrometers, the time-of-flight secondary ion mass spectrometer (ToF-SIMS) in particular is of interest.
摘要:
A system and method of mass spectrometry is provided. Ions from an ion source are stored in a first ion storage device and in a second ion storage device. Ions are ejected from the first ion storage device to a first mass analysis device during a first ejection time period, for analysis during a first analysis time period. Ions are ejected from the second ion storage device to a second mass analysis device during a second ejection time period. The ion storage devices are connected in series such that an ion transport aperture of the first ion storage device is in communication with an ion transport aperture of the second ion storage device. The first analysis time period and the second ejection time period at least partly overlap.
摘要:
The content of the invention comprises a concept of multi-beam ion pre-selection from a single sample, coordinated mobility (against the gas flow) separation, cooling ions in supersonic gas flow and mass separation of thus low divergent ions by single or plural compact high-resolution orthogonal time-of-flight mass spectrometers both linear or reflectron type with controlled collision-induced dissociation (CID) and multi-channel data recording for the optimization of sample use in the analysis, and obtaining as much useful information about the sample as possible in a reasonably short time.
摘要:
An ion processing unit (10), including a series of M perforated electrode sheets (12), driving electronics (14, 16) and a central processing unit (18), allows formation, shaping and translation of multiple effective potential wells (42). Ions, trapped within a given effective potential well (42), can be isolated, transferred, cooled or heated, separated, and combined. Measurement of induced image currents allows measurement and typing of ion species by their respective charge-to-mass ratios. The combination of many electrode sheets (12), each having N multiple perforations (22), creates a plurality of parallel ion processing channels (26). The ion processing unit (10) provides an N by M massively parallel ion processing system, furnishing means for processing large numbers of ions in parallel in the same manner, but with different ion processes deployed at different sections of each ion processing channel (26). In addition, the space-filling parallel structure of the present invention provides an efficient means for temporary storage of large numbers of ions, including charged antimatter.
摘要:
A device and associated method are disclosed for interfacing an ion trap to a pulsed mass analyzer (such as a time-of-flight analyzer) in a mass spectrometer. The device includes a plurality of separate confinement cells and structures for directing ions into a selected one of the confinement cells. Ions are ejected from the ion trap in a series of temporally successive ion packets. Each ion packet (which may consist of ions of like mass-to-charge ratio), is received by the ion interface device, fragmented to form product ions, and then stored and cooled in the selected confinement cell. Storage and cooling of the ion packet occurs concurrently with the receipt and storage of at least one later-ejected ion packet. After a predetermined cooling period, the ion packet is released to the mass analyzer for acquisition of a mass spectrum.
摘要:
This invention relates to the analytical electronics used to identify compositions and structures of substances, in particular, to the analyzers comprising at least one mass-spectrometer (MS) and may be applied in such fields as medicine, biology, gas and oil industry, metallurgy, energy, geochemistry, hydrology, ecology. Technical result provides the increase in MS resolution capacity, gain in sensitivity, precision and measurement rates of substances compositions and structures concurrently with enhancement of analyzer functional capabilities, downsizing and mass reduction. A multipath method of mass-spectrometry and a three-dimensional reflecting (-reflecting) method of mass-spectrometry requiring to use a three-dimensional reflecting IO sub-system (- reflector) are developed. A new type of electric field distribution such as transversely discontinuous conic field distribution, including its type of three-dimensional distribution in area of reflection, is proposed to implementing said methods. Versions of devices to implement the claimed method are developed. Proposed schematic ion optical diagrams allow to developing different MS types.